
Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

NLR-TR-2014-150

A new combustor and emission model for the gas
turbine simulation program GSP

S.C.A. Kluiters, W.P.J. Visser and E.R. Rademaker

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

Anthony Fokkerweg 2
P.O. Box 90502
1006 BM Amsterdam
The Netherlands
Telephone +31 (0)88 511 31 13
Fax +31 (0)88 511 32 10
www.nlr.nl

UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

Report no.
NLR-TR-2014-150

Author(s)
S.C.A. Kluiters
W.P.J. Visser
E.R. Rademaker

Report classification
UNCLASSIFIED

Date
April 2014

Knowledge area(s)
Gasturbinetechnologie

Descriptor(s)
Performance Simulation
Thermodynamic model
Emissions

A new combustor and emission model for the gas turbine
simulation program GSP

Effects of applying alternative fuels (methane and hydrogen) on NOx

Problem area
With the increasing attention to gas
turbine exhaust gas pollution, a
need has emerged to quantify
effects of a variety of operational
variables such as engine condition,
fuel type and water/steam injection
on the emission levels. An effective
approach to address this need is to
integrate combustor emission
models in gas turbine performance
models. NLR’s generic gas turbine
performance simulation
environment (GSP) has therefore
been extended with a number of
features for accurate analysis of
these effects on the major exhaust

gas emissions NOx, CO, UHC and
smoke.

Description of work
The work has been carried out in
the late nineties at NLR as a
graduation assignment for the
authors study Aerospace
Engineering at the Technical
University of Delft. His main
supervisor was W.P.J. Visser.

S.C.A. Kluiters worked out a real
thermo-chemical gas model based
on NASA CEA. Main difference
between the current and NASA
model is that NASA minimizes the

UNCLASSIFIED

UNCLASSIFIED

A new combustor and emission model for the gas turbine simulation
program GSP

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 88 511 31 13, Fax +31 88 511 32 10, Web site: www.nlr.nl

so-called Gibbs Energy function,
whereas Kluiters made use of the
so-called equilibrium constants to
calculate thermal equilibrium
determined by gas composition and
thermodynamic parameters as
pressure and temperature.

Kluiters coded in Delphi-Pascal the
gas model and successfully
compared the obtained results with
those of NASA CEA.

W.P.J. Visser has substantially
contributed to the creation of the
real gas model and has been
responsible for the integration and
implementation of the gas model in
GSP and can therefore be regarded
as co-author.

Results and conclusions
During the last decade the real gas
model implemented in GSP has
proved its value in many

applications varying from gas
turbine performance predictions
with flexible fuel handling (up to a
user-specified fuel composition
based on various species), life
prediction of gas turbine
components, adaptive modeling and
engine emissions calculations.

Applicability
This report originally and on-
officially had been published as a
NLR Internal Memorandum (VH-
98-010) with limited access. But
due to its detailed description of the
thermo-chemical gas model
implemented in GSP and the
relevance to GSP (for its further
developments and applications),
this official version has been
published. This NLR Technical
Report can be designated as a GSP
reference document.

http://www.nlr.nl/

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TR-2014-150

A new combustor and emission model for the gas
turbine simulation program GSP

S.C.A. Kluiters1, W.P.J. Visser1 and E.R. Rademaker

1 TU-Delft

No part of this report may be reproduced and/or disclosed, in any form or by any means without the prior
written permission of NLR.

Customer National Aerospace Laboratory NLR
Contract number - - -
Owner NLR
Division NLR Aerospace Vehicles
Distribution Limited
Classification of title Unclassified
 April 2014
Approved by:

Author
S.C.A. Kluiters
W.P.J. Visser
E.R. Rademaker

Reviewer
O. Kogenhop

Managing department AVGS
A.J. Vollebregt

Date: 11-04-2014 Date: 11-04-2014 Date: 11-04-2014

A.M. Vollebregt

NLR-TR-2014-150

 3

Preface

A previous version of this report was prepared at the National Aerospace Laboratory (NLR) in
the Netherlands as a graduation assignment for the author’s study Aerospace Engineering at
Delft University of Technology. In a summarised form, it is also published as a paper called
‘Modelling the Effects of Operating Conditions and Alternative Fuels on Gas Turbine
Performance and Emissions’, written by W.P.J. Visser and the author. This paper was presented
at the RTO Applied Vehicle Technology Panel Symposium on Gas Turbine Engine
Combustion, Emissions and Alternative Fuels, held 12th to 16th October in Lisbon, Portugal.

People who are primarily interested in a quick overview and some results could read the paper
or the summary of this report. For readers not familiar with thermodynamics and emissions, it
might be advisable to read the appendices on these subjects in advance. The author wishes to
thank all the people who helped in the creation of this memorandum, especially W.P.J. Visser,
for all the support, remarks and advises.

The current report originally has been published as in NLR internal memorandum (VH-98-010).
But due to its detailed description of the thermo-chemical gas model implemented in GSP and
the relevance as GSP reference document, it has been decided to publish it as an official NLR
Technical Report. W.P.J. Visser has substantially contributed to the creation of the real gas
model and has been responsible for the integration and implementation of the gas model in GSP
and can therefore be regarded as co-author. E.R. Rademaker’s role can be best described as
editor. Changes with respect to the original report have been incorporated and are based on
minor errors, GSP extensions and thoughts developed during the last decade.

NLR-TR-2014-150

 4

This page is intentionally left blank.

NLR-TR-2014-150

 5

Summary

With the increasing attention to gas turbine exhaust gas pollution, a need has emerged to
quantify effects of a variety of operational variables such as engine condition, fuel type and
water/steam injection on the emission levels. An effective approach to address this need is to
integrate combustor emission models in gas turbine performance models. NLR’s generic gas
turbine performance simulation environment (GSP) has therefore been extended with a number
of features for accurate analysis of these effects on the major exhaust gas emissions NOx, CO,
UHC and smoke.

First, possible gas turbine fuels were studied. Apart from the common gas turbine fuels like jet
fuels and natural gas, a large number of alternative fuels emerge. This is not only because of
desired exhaust gas emissions reductions, but it is also due to the predicted shortage of fossil
fuel resources. The compositions of these fuels, especially of gasification products, can differ
widely, which necessitates a flexible fuel specification interface for GSP.

Considering this flexible fuel specification, together with the wish to implement an improved
combustor and emission model, led to the conclusion that the GSP gas model lacked both
applicability and accuracy. Therefore, a new gas model was implemented, derived from the gas
model used by the NASA CEA-program. In the new gas model, extended composition
description and improved chemistry modelling have substantially increased the applicability and
accuracy. The gains of this new gas model are also visible outside the combustion chamber,
where evaporation/condensation and dissociation and their effect on component performance
can be modelled now.

After implementation of the new gas model, combustor and emission models were studied. The
choice was made to develop a new generic multi-reactor combustor model. The heat release and
temperatures are calculated assuming chemical equilibrium. The emission formation is
modelled applying simple kinetic schemes.

A combustion chamber model is built by dividing the combustion chamber liner volume into an
array of reactors. In each reactor four flows can enter: the flow from the reactor before, an
oxidant flow coming from outside the liner, the fuel flow, and a flow of water/steam. These four
flows are assumed to mix instantaneously and reach chemical equilibrium at the reactor exit.
In general, two types of emission formation are discerned: instantaneous formation in a flame
and gradual formation throughout the combustion chamber. The instantaneously formed
emissions are added to the total amount of emissions present so far. The gradual formation

NLR-TR-2014-150

 6

determines emission formation rate equations (i.e. equations for time derivatives of the
emissions). The (equilibrium) temperature, composition and the actual emission concentration
at each reactor exit are used to calculate the emission formation rates. These formation rates are
numerically integrated using the trapezium rule.

Four mechanisms of NOx formation are modelled: prompt NOx, fuel NOx, thermal NOx and NOx
formation by the N2O mechanism. The amounts of prompt NOx and fuel NOx are calculated
using empirical equations. They are supposed to be instantaneously formed in flames. Thermal
NOx and NOx formed by the N2O mechanism are assumed to be formed throughout the
combustion chamber.

For CO emissions the assumption is made that the fuel instantaneously reacts to CO (and H2O),
and is subsequently (gradually) oxidised to CO2 by one chemical reaction.

For UHC emissions, the fuel is converted to an amount of jet fuel or methane, depending on the
fuel used. Both the jet fuel and methane are (partially) oxidised in the subsequent part of the
combustion chamber.

For smoke (soot), the assumption is made that the soot particles are spherical. An empirical
equation is used to predict formation, while kinetic-type expressions are used to calculate the
smoke oxidation.

The current model is preferably used as sensitivity analysis tool, i.e. to calculate effects on
performance and emission parameters relative to reference values. Therefore, tuning to the
reference values is necessary.

A demonstration of the combustor model is presented in the figure on the next page. In this
figure, a multi-reactor model and design point results for the CF6-80C2 combustion chamber
are shown. The combustion chamber is divided into three reactors. In the above two graphs, the
fuel-air-ratio (FAR) and static temperature are shown as a function of the x-co-ordinate (which
is parallel to the combustion chamber centre line). In the third graph and in the fourth graph, the
emission mole fractions and the soot radius are shown as a function of the x-co-ordinate.

Validation of the emission models was performed using measurement data for the CF6-80C2.
For this large turbofan engine, also the effects of non-standard ambient conditions, engine
deterioration and application of alternative fuels were studied.

NLR-TR-2014-150

 7

Another demonstration of the combustor model consisted of predicting effects of applying a
low-calorific-value fuel in a gas turbine designed for natural gas on performance and emissions.

air

1 2

fuel

3

0.00

0.04

0.08

0

1000

2000

3000

0

20
40

60

0 0.1 0.2 0.3 0.4 0.5

1000

2000

3000

FAR

T static [K]

Soot radius [nm]

NO[ppm]

CO[ppm]

UHC[ppm]

axial position [m]
CF6-80C2 3-reactor model and design point results

Before further improvement of the combustor model, more validation studies are needed using
detailed combustor data of a variety of engines and operating conditions.

Possible improvements are the implementation of an alternative (numerical) integration scheme,
better modelling of the influence of the cooling (wall) flow on emissions and better modelling
of the division of the liner cooling air over the reaction zones. The current generic multi-reactor
combustor module can be used for easy implementation of improved emission models in the
future.

NLR-TR-2014-150

 8

Contents

1 Introduction 15

2 Gas turbine fuels and exhaust gas emissions 16

2.1 Fuels 16
 Introduction 16 2.1.1
 Liquid fuels 17 2.1.2
 Gaseous fuels 18 2.1.3

2.2 Alternative fuel effects on performance 19
2.3 Exhaust gas emissions 20

 Pollutants 20 2.3.1
 Emission monitoring 22 2.3.2
 Regulations 22 2.3.3

3 Gas models for gas turbine performance calculations 24

3.1 Constant specific heat gas model 24
3.2 Temperature dependent specific heat gas model 25
3.3 Variable composition gas model 26
3.4 Variable composition kinetic gas model 27

4 The new GSP 8.0 gas model 28

4.1 Choice of a new gas model 28
4.2 Description of the new gas model 29

 General 29 4.2.1
 Relations between thermodynamic and thermal transport properties 30 4.2.2
 Modelling of composition changes 31 4.2.3

4.3 Application of the new gas model 33
 Applying changing compositions 33 4.3.1
 Determining compressor and turbine performance 33 4.3.2
 Extensions in the user interface 34 4.3.3

5 Gas turbine combustor models 34

5.1 Combustion flow modelling 35
 Black box model 35 5.1.1
 Multi-reactor model 36 5.1.2
 One-dimensional model 37 5.1.3

NLR-TR-2014-150

 9

 Multi-dimensional model 38 5.1.4
5.2 Combustion chemistry modelling 38

 Flame sheet model 38 5.2.1
 Chemical equilibrium model 39 5.2.2
 Non-equilibrium and kinetic scheme chemistry 40 5.2.3

6 The new GSP 8.0 combustor model 40

6.1 Flow modelling 41
6.2 Chemistry modelling 42

 Calculation of the equilibrium temperature and composition 43 6.2.1
 Exhaust gas emissions modelling 44 6.2.2

7 Validation 58

7.1 The CF6-80C2 model 59
 General 59 7.1.1
 Emission predictions 60 7.1.2

7.2 The GE LM2500 model 66
 General 66 7.2.1
 Performance predictions 67 7.2.2
 Emission predictions 70 7.2.3

7.3 Discussion on the results 71

8 Conclusions and Recommendations 72

References 75

Appendix A Graduation assignment 79

Appendix B Combustion chemical reactions 80

B.1 Reaction kinetics 80
B.2 Dissociation 82
B.3 Heats of reaction and heats of formation 82
B.4 Calculating equilibrium compositions 85

Appendix C Detailed description of gas models 87

C.1 GSP 7.0 87
C.2 GasTurb 7.0 90

NLR-TR-2014-150

 10

C.3 GasTurb 8.0 92
C.4 NASA CEA-Program 93
C.4.1 Calculation of thermodynamic and thermal transport properties 93
C.4.2 Calculation of equilibrium compositions 99
C.5 A constant specific heat gas model 99

Appendix D Detailed description of combustor models 101

D.1 GSP 7.0 101
D.2 GasTurb 7.0 102
D.3 GasTurb 8.0 102

Appendix E Formation of emissions 103

E.1 Formation of UHC, CO and Smoke 103
E.2 Formation of Nitrogen oxides 103

Appendix F NOx-reductions in gas turbines 110

Appendix G An introductory description of GSP 112

G.1 A general introduction to GSP 112
G.2 GSP and the gas model 113

Appendix H Details of the new GSP 8.0 gas model 115

H.1 General remarks 115
H.2 Determination of thermodynamic and thermal transport properties as a function of
temperature, pressure and composition 116
H.3 Modelling of composition changes 118
H.3.1 Solving the enthalpy balance 118
H.3.2 Determination of equilibrium compositions at a given temperature 121
H.4 Total versus static temperatures and pressures 123

Appendix I Calculation of compressor and turbine performance with real gas effects125

I.1 Calculating outlet conditions 125
I.2 Using maps 126

Appendix J Calculating combustion equilibrium 130

J.1 Solving the enthalpy balance 130
J.2 Calculating equilibrium at a given temperature 134

NLR-TR-2014-150

 11

Appendix K Delphi code of the gas and combustor model 137

K.1 Structure of the gas and combustor model 137
K.2 Pascal code of the new procedures 143

NLR-TR-2014-150

 12

List of Symbols

A : Area (m2);
a : Speed of sound (m/s);
C : Concentration (kmol/m3), (mol/cm3);
cp : Specific heat at constant pressure (J/kg/K);
cv : Specific heat at constant volume (J/kg/K);
CEA : (NASA) Computer program for calculation of complex chemical equilibrium
 compositions and applications;
CEM : Continuous Emissions Monitoring;
CFD : Computational Fluid Dynamics;
CO : Carbon monoxide;
CO2 : Carbon dioxide;
Dp : Mass of gaseous pollutant (g);
DUT : Delft University of Technology;
E : Energy (J);
EI : Emission index (g/kg fuel);
FAR : Fuel-air-ratio (-);
F00 : Rated (maximum) thrust (kN);
GE : General Electric;
GSP : Gas turbine Simulation Program;
H : Hydrogen mass percentage (%), Heat (change) (J/kg);
h : Enthalpy (J/kg);
ICAO : International Civil Aviation Organisation;
IDLE : Minimum thrust position of gas lever;
IGCC : Integrated Gasification Combined Cycle plant;
ISA : International Standard Atmosphere;
Kp : Equilibrium constant using partial pressures;
L : Characteristic length (m);
LHV : Lower Heating Value (J/kg);
LPG : Liquefied Petroleum Gas;
LTO : Landing-takeoff cycle;
M : Mach number (-), Molar mass (g/mole);
m : Mass flow (kg/s), Mass fraction (-), Order of reaction (-);
N : Total number of moles (-), Number of revolutions (rad/s);
n : Number of moles (-), Total number of moles of gaseous species

 per gram mixture (mole/g);

NLR-TR-2014-150

 13

NASA : National Aeronautics and Space Administration;
NLR : National Aerospace Laboratory;
NOx : Nitrogen oxides;
NG : Number of Gases;
NS : Number of Species;
P : Power (W);
PEM : Predictive Emissions Monitoring;
PR : Pressure Ratio (-);
p : (Total) Pressure (Pa), (bar), (atm);
ppm : Parts per million;
Q : Heat (J);
R : Universal gas constant (=8314.51 (J/kmole/K));
RNI : Reynolds Number Index (-);
Rg : Specific gas constant (J/kg/K);
Re : Reynolds number (-);
rpm : revolutions per minute (/min);
S, s : Entropy (J/kg/K), (J/mole/K);
SN : Smoke number (-);
SOx : Sulphuric oxides;
T : (Total) Temperature (K);
t : Time (s);
UHC : Unburned hydrocarbons;
V : (Flow) Velocity (m/s);
W : Work (J);
X , x : Mole fraction (-);
γ : Ratio of specific heats (=cp/cv) (-);
η : Efficiency (-);
µ : Dynamic viscosity (kg/(ms)), (µP);
Π00 : Reference pressure ratio (-);
ρ : Density (kg/m3);
Φ : Entropy function;
φij : Viscosity interaction coefficient between species i and j (-);
φ : Equivalence ratio (-);
ω : Specific surface oxidation rate (g/cm2/s);

NLR-TR-2014-150

 14

Subscripts
3 : compressor exit;
A : activation;
a, air : air;
c : corrected;
comb : combustion;
comp : compression;
eq : equilibrium;
F : flow;
f : combustion products in case of stoichiometric combustion, fuel;
g : (gaseous) medium;
i, j : specie i, j;
in : inlet;
l : air;
p : (constant) pressure;
R : rotor blade tips;
r : reaction;
s : virtual medium (used for calculation ease);
st : standard conditions;
stoich : stoichiometric.

NLR-TR-2014-150

 15

1 Introduction

In the mid 1940’s the first symptoms of smog were encountered in the Los Angeles area. It
appeared that the increasing amounts of hydrocarbon fuels burned, caused by a growing
industry and population, were responsible for the increased air pollution. Ever since, the
growing demand for energy has resulted in higher amounts of pollutants emitted into the
atmosphere. A part of the pollution is caused by gas turbines. Especially aircraft gas turbines are
suspected to play an important role in ozone layer depletion and global warming, emitting
pollutants higher in the atmosphere.

During the last few decades, the environmental problems have worsened, triggering extensive
research by universities, manufacturers and research institutes on formation of pollutants, and
on the effects these pollutants have on the atmosphere. The results of this research are used in an
attempt to lower pollutant emissions and reduce their effect on living circumstances. On the
manufacturers side reduced emissions are achieved by detailed modelling of the processes in the
combustion chamber (using CFD). On the operational side, attempts to reduce emissions are
performed by optimising operating conditions, such as engine condition, aircraft flight
procedures, fuel type and water/steam injection. An effective approach to analyse operating
conditions effects on emissions is to integrate emission models in gas turbine performance
models, like NLR’s Gas turbine Simulation Program (GSP).

So far, GSP has been primarily used to study operational aspects like diagnostics and failure
analysis, where transient and static behaviour can be calculated under varying operating
conditions. A few years ago, GSP was extended with a simple model predicting gas turbine
emissions. However, the applicability if this model is limited.

The main purpose of the work described is to extend GSP in order to enable accurate
predictions of the effects of applying different fuels as well as water/steam injection on gas
turbine performance and emissions.

In the second chapter of this report, a general introduction to fuels, alternative fuel effects on
performance and exhaust gas emissions is given. In the third chapter different types of gas
models are studied. Chapter 4 contains the new gas model implemented in GSP 8.0 (the new
version). In chapter 5 a number of combustor models are described, and the GSP 8.0 combustor
model is discussed in chapter 6. Validation of the new gas and combustor model is presented in
chapter 7. Chapter 8 contains the conclusions and recommendations.

NLR-TR-2014-150

 16

2 Gas turbine fuels and exhaust gas emissions

The first paragraph of this chapter describes the most important categories of fuels to be used by
gas turbines and the central theme of the second paragraph is gas turbine performance using
different fuels. In the third paragraph a closer look is taken at exhaust gas emissions.

2.1 Fuels

2.1.1 Introduction
Common fuels used in gas turbines are hydrocarbons, obtained by distillation of crude oil. Since
the 1973-1974 fuel crisis and the subsequent rise in fuel prices, the interest in diversification of
fuels has grown. Diversification is also attractive because the world’s fossil fuels resources are
limited. In figure 2.1 (Hein, Ref. 17) the distribution of fossil energy resources in the world is
shown and in figure 2.2 (Hein, Ref. 17) the accumulated world energy consumption. Because of
the strongly growing demand for energy and the limited natural gas resources, it is to be
expected that the end of the world’s natural gas supplies will be reached in the next century.

Figure 2.1 Distribution of fossil energy resources in the world

Alternative fuels are gasification products from coal or biomass (like straw). From figure 2.1 it
is obvious that coal resources are present in large amounts. Because biomass grows on fields, it
can be used eternally. Another important alternative fuel is hydrogen, although the production
of hydrogen costs a lot of energy itself.

NLR-TR-2014-150

 17

Figure 2.2 Accumulated world energy consumption

2.1.2 Liquid fuels
Gas turbines can be designed to use almost any liquid hydrocarbon fuel. The liquid fuels that are
easiest to handle are fuels that are liquid at room temperature and atmospheric pressure. These
are generally the hydrocarbons containing between four and twenty C atoms per molecule.
Important in this category are kerosenes, used for aircraft engines, and diesel.
Fuels that are gaseous at room temperature can be made liquid by keeping them under high
pressure and/or low temperature. In the case of hydrocarbon fuels, examples are liquefied
natural gas (primarily methane), or liquefied propane or butane. Hydrogen can also be used as a
liquid fuel, but the temperature should then be kept as low as 33 (K) under high pressure or even
lower if kept under lower pressures.
Although gas turbines are relatively tolerant concerning the liquid fuels to be used, the specific
application of the gas turbine can inhibit the use of certain fuels. For example, aircraft fuels
have to meet a number of stringent requirements, for reasons of safety and because of strongly
varying ambient conditions. At low temperatures occurring during long-range high-altitude
flights (temperatures as low as 230 (K) were recorded), the fuels should not freeze and must
possess sufficient lubrication properties for movable parts within the fuel system. Also,
excessive evaporation losses must be precluded and wide flammability limits are required for
easy in-flight restarting of the engine. A high calorific value is desirable to enable longer ranges
at the same fuel weight. These are only a few of the desired requirements.

NLR-TR-2014-150

 18

Different requirements for jet fuels have led to typical fuel standards for military and civil
aviation: kerosene-type fuels (Jet A-1, JP-5, JP-6, and JP-7) and wide-cut fuels (JP-4). These
fuels differ in properties like flash and freezing point. They typically have a heating value of
about 43 (MJ/kg) and an H/C-ratio between 1.9 and 2.0.

2.1.3 Gaseous fuels
Common gaseous fuels are shown in table 2.1, including their composition and lower heating
value (Bokhorst, Ref. 4). Natural gas is a widely used fuel for gas turbines, but the application
of other (low-calorific-value) fuels is considered. An example is the interest in application of
(low-calorific-value) fuels, generated as a by-product of industrial processes (e.g. refinery waste
gas).

Table 2.1 Composition and lower heating value of a number of gaseous fuels (Bokhorst, Ref. 4)

Fuel Typical composition (in volume%) Lower heating value
(MJ/m3) (MJ/kg)

Natural gas 75-95%CH4, C2+, N2, CO2 30-45 35-55

LPG (gaseous) C3H8/C4H10-mixture 90-125 45-60
Refinery waste gas 40-90%H2, CH4, C2+ 15-40 50-100
Gasification gases:
 Air blown 10-15%H2, 10-30%CO, 30-60%N2, CO2 4-6 4-6
 Oxygen blown 40-65%CO, 30-40%H2, CH4, CO2, N2 8-15 8-15
Coke oven gas 50-55%H2, 28-32%CH4, C2+, CO, N2, CO2 20-35 45-65
Blast furnace gas 55-60%N2, 25-30%CO, CO2, H2 3-4 3-4

An interesting process is making gaseous fuels from solid fuels, the so-called gasification.
Gasification is achieved in a gasifier, e.g. a fluidised bed. In a fluidised bed, air or oxygen is
guided through the solid fuel at a high temperature. In this way partial oxidation (in air or
oxygen) of the fuel is achieved, as well as degassing. After the partial oxidation some
combustible components are left. Gasification can also be in the form of pyrolysis of the fuel
(i.e. breaking up the fuel molecules into smaller molecules), without using oxygen or air.

In table 2.1 it can be seen that gasification gases normally have a low calorific value, even in
case of oxygen blown gasifiers. To increase the heating value, the gases could be mixed with a
fuel having a higher heating value, like propane or butane.

In an Integrated Gasification Combined Cycle plant (IGCC) the gasifier and gas turbine are
combined in one cycle. If a pressurised fluidised bed is used as gasifier, bleed air taken from the

NLR-TR-2014-150

 19

compressor is used for the gasification process. The gasification gases are fed back to the gas
turbine to serve as fuel. An interesting thing is that the partial oxidation has made the
temperature of the gasification products quite high, so the energy content of the gasification
products can differ quite a lot from the heating value at standard temperature. For more
information on gasification, see (Hein, Ref. 17).

Coal gasification may be a good option for the future: according to figure 2.1 the coal resources
are a lot bigger than the natural gas supplies. However, the coal supplies are also limited and
burning of coal causes greenhouse gases in the atmosphere. Therefore, more permanent sources
of energy are searched, not producing greenhouse gases. One possible source of energy for the
future is biomass gasification. Examples of biomass are straw, wood and non-food cereals. An
example of using biomass gasification products in a gas turbine designed for natural gas is given
in chapter 7.

Gasification gases can contain a number of different species. Most species are light: propane
and butane for example are hardly present in these fuels. As already said, gasification can be
partial oxidation, so CO, CO2 and H2O can be present in quite large amounts. If the gasification
is air blown, N2 can also be present in quite large amounts.

2.2 Alternative fuel effects on performance
Applying alternative fuels in gas turbines can strongly influence gas turbine operation.
Assuming that the mass flow at the turbine inlet is choked, the mass flow there can be
calculated with the formula (Bokhorst, Ref. 4):

1
1

1
2 −

+

∗








+

⋅=
γ
γ

γ
γ
R

MA
p
Tm

 (2.1)

where: m = mass flow (kg/s),
 T = (total) temperature (K),

 p = (total) pressure (Pa),
 A* = critical flow area (m2),
 M = molar mass (kg/mole),
 γ = ratio of specific heats (cp/cv) (-),
 R = universal gas constant (J/mole/K).

When fuels with different heating values are used to produce the same amount of power or
thrust, the fuel mass flow changes, and for that reason the total mass flow also changes. The

NLR-TR-2014-150

 20

terms on the right-hand side of the above equation (2.1) normally don’t change very much with
changing fuel composition. Therefore, the right hand side of equation (2.1) can be assumed
constant.

If the left-hand side of equation (2.1) is constant, it is obvious that an increase (decrease) in
mass flow necessitates an increase (decrease) in pressure and/or a decrease (increase) in
temperature. A decreasing turbine inlet temperature could cause a lower efficiency or delivered
power (or thrust). However, if the pressure increases, so will the compressor pressure ratio. The
compressor pressure ratio has a direct effect on gas turbine efficiency in general and on
compressor efficiency and stall margin in particular.

Using a low-calorific-value fuel, one needs a higher fuel mass flow to reach the same delivered
power or thrust. If the turbine flow capacity remains constant, the turbine inlet temperature
could decrease to balance the rise in mass flow. If the turbine inlet temperature doesn’t decrease
enough, a rise in pressure is necessary to balance the bigger mass flow, which also means a rise
in compressor pressure ratio. This rise in compressor pressure ratio will make the stall margin
smaller. If the stall margin becomes too small, a number of solutions can be applied. One is
increasing the turbine flow capacity, another is increasing compressor load (e.g. by bleeding
compressor air). This last option can be desirable when the gas turbine is part of an Integrated
Gasification Combined Cycle (IGCC) with pressurised fluidised bed combustion: the bleed air
can then be used for the gasification process: it will be fed back into the combustion chamber.
Apart from the stall problems, also rotor over-speed problems can occur because of the
mismatch between turbine and compressor. It appears that stall problems are more severe for
single shaft engines (with fixed power turbine) while rotor over-speed problems are more severe
for free power turbines (see chapter 7).

2.3 Exhaust gas emissions

2.3.1 Pollutants
In table 2.2, the pollutants emitted by gas turbines as well as their detrimental effects on health
and environment are mentioned. As can be seen, the first five pollutants mentioned have direct
effect on human health as well as on the environment. The greenhouse gas CO2 has no direct
effect on human health, but can cause global warming. It is believed that condensed water
(H2O) in the troposphere and the stratosphere also leads to global warming. In this condensation
process an important role is played by smoke and sulphur emissions: due to these emissions,
condensation nuclei are formed.

NLR-TR-2014-150

 21

Table 2.2 Effects of pollutants on health and environment (Bruin, Ref. 7)

Pollutant Effects on Health Effects on environment
CO Toxic Tropospheric ozone production
UHC Toxic Global warming

Tropospheric ozone production
Smog

Smoke Respiratory problems
Cancer

Global warming

SOx Toxic Global warming
Corrosive
Acid rain

NOx Toxic Global warming
Tropospheric ozone production
Stratospheric ozone depletion
Smog
Acid rain

CO2 Global warming

H2O Global warming

The first gas turbines produced relatively large plumes of smoke. Apart from smoke, they also
injected considerable amounts of carbon monoxide (CO) and unburned hydrocarbons (UHC)
into the atmosphere. The production of these emissions gradually decreased as the combustion
process became better understood and as higher turbine entry temperatures were reached,
striving for higher efficiencies. These higher temperatures shifted the emissions production
from CO, UHC and smoke to NOx-production. A positive effect of the increase in overall
efficiency, apart from lower fuel costs, is that the emissions of the greenhouse gases CO2 and
H2O are lowered. Because sulphuric oxides are only produced if sulphur is present in the fuel,
SOx emissions can be reduced by prior sulphur removal from the fuel.

Nowadays, CO and UHC are primarily produced at IDLE power levels. Therefore they are only
important in the vicinity of airports. Smoke and NOx-emissions are primarily produced at high
power settings (in take-off). NOx-emissions are the most important exhaust gas emissions of
today. Attempts to lower NOx-production have primarily focussed on alternative combustion
chamber design: a few alternative combustion chamber shapes are presented in appendix F.

NLR-TR-2014-150

 22

2.3.2 Emission monitoring
Two methods of emissions monitoring are currently in use: Continuous Emissions Monitoring
(CEM) and Predictive Emissions Monitoring (PEM) (Botros, Ref. 5). The main advantage of
CEM is that pollutants are on line measured. Disadvantages are (among other things) the
necessity to frequently calibrate the equipment, the fact that the technique is not truly
continuous and the high costs of operation and maintenance. In contrast, PEM techniques offer
greater accuracy and the possibility to provide advance results for specified operating
conditions. For more information on emission monitoring, readers are referred to (Botros,
Ref. 5).

Extensive work has been done on predicting (and reducing) emissions from gas turbines and a
lot of models have been proposed. The majority of the models concern NOx-formation. Often,
these models are based on measurements, which can be performed using complete gas turbines
or by using only the combustion chamber. In case of aircraft gas turbines, measurements can be
performed on the ground in test cells, possibly simulating flight conditions at higher altitudes
and in real flight (Jentink, Ref. 21).

The emissions can be quantified in a number of ways. A method often used is stating the
fraction of the specie relative to the total of all species (as percentage or parts-per-million,
abbreviated: ppm). Different fractions can be used, like volume fractions (ppm(v)) or mass
fractions (ppm(m)). In GSP the emission index (EI) is used for UHC, CO and NOx-production.
The emission index is equal to the number of grams (g) of the pollutant per kilogram (kg) of
fuel used. To quantify the smoke emissions, the smoke number (SN) is often used, a number
between 0 and 100 denoting the level of staining of a special filter.

In chapters 5 and 6 more attention will be paid to combustion and emission modelling when the
combustor model is discussed.

2.3.3 Regulations
Maximum gas turbine emissions are limited by legislation because of their negative impact on
environment and human health. Legislation can differ from country to country.
In the case of aircraft gas turbines, maximum allowable emissions are set by the International
Civil Aviation Organisation (ICAO). The ICAO certification resulted from the engine emission
regulation program, started by the Environmental Protection Agency in the U.S. in 1970, mainly
aimed at reducing emissions of UHC and smoke around airports. In 1981 the regulations were
included in the engine certification program. These regulations are shown in table 2.3. The
pollutants considered are CO, UHC, smoke, and NOx-emissions. As can be seen, the emission

NLR-TR-2014-150

 23

limits depend on the date of manufacture of the engine, the rated thrust (F00), the reference
pressure ratio (Π00) and the application (subsonic/supersonic).

Table 2.3 ICAO regulatory levels for Dp/F00 or Dp/F00

* (Bruin, Ref. 7)

Engine Type Subsonic turbojet/turbofan Supersonic turbojet
/turbofan

Date of
Manufacture

≥1-01-1983 ≥1-01-1986 ≥1-01-1996 ≥18-02-1982

Smoke (SN) 83.6(F00)-0.274 or 50, whichever is higher

Rated thrust >26.7 (kN) -
CO (g/kg) - 19.6 140(0.92)Π00

UHC (g/kg) - 118 4550(Π00)-1.03

NOx (g/kg) - 40+2Π00 32+1.6Π00 36+2.42Π00

F00
* : Rated thrust when afterburning is used

So far, compliance with maximum emission limits is only checked at certification of engines,
during a landing and take-off (LTO) cycle. This cycle includes the operations performed by
aircraft as it descends from an altitude of 914 meter (3000 ft) on its approach path to the time it
subsequently attains the same altitude after take-off: approach, idle, take-off and climb out. In
these four situations exhaust gas emission measurements are performed. All the parameters are
corrected to sea level ISA conditions using a relative humidity of 60%.

However, the major part of the emissions is emitted in cruise mode of the flight. Therefore,
regulation on maximum emission limits during cruise-conditions is considered. Another option
for the future is measuring and limiting emissions from engines during service-life, because the
exhaust gas emissions can increase when engines become older.

For industrial gas turbines, the emissions of NOx and SOx are limited. There is no general limit
on smoke, but local regulations must be observed. For automotive gas turbines, the same
maximum emission levels apply as for automotive piston engines.

NLR-TR-2014-150

 24

3 Gas models for gas turbine performance calculations

In order to implement a better model for the prediction of exhaust gas emissions, the current gas
model of GSP (version 7.0) has to be improved. A gas model is defined here as a model that
describes the thermodynamic and thermal transport properties of a (possibly two-phase)
medium under changing circumstances. As the changing circumstances, in case of gas turbines,
primarily changing temperatures and pressures are meant. When the temperature and/or pressure
change, the composition of the medium can also change significantly. This change in
composition also has to be modelled by the gas model.

For gas turbine applications, the most important thermodynamic properties to be determined are
the specific heat at constant pressure (cp), the enthalpy (h), the entropy (s), the ratio of specific
heats (γ), the specific gas constant (Rg), and the speed of sound (a) as a function of composition,
temperature and pressure. The only relevant thermal transport property for the moment is the
dynamic viscosity (µ).

A lot of different gas models are possible. The models can range from very simple to very
complex. If the gas model becomes more complex, more time will be needed for calculations,
but the accuracy of the model will also increase, and the applicability will be wider. In this
chapter, a few examples out of the possible range of gas models are shown. The first gas model
is the most simple one and the last model is the most complex one. Examples of the gas models
are described in appendix C.

3.1 Constant specific heat gas model
One of the most simple gas models thinkable is a model using constants for the specific heat at
constant pressure, the ratio of the specific heats and the specific gas constant:

.ConstC p =

To make the model a little more generally applicable, several constant values can be used for
the thermodynamic properties. Each constant value adheres to a certain gas stream. Gas streams
can for example be air, combustion gases using fuel A and combustion gases using fuel B. The
composition of a gas stream is assumed to be constant.

An example of a constant specific heat gas model is presented in paragraph C.5.

NLR-TR-2014-150

 25

3.2 Temperature dependent specific heat gas model
If the number of constants used for the thermodynamic properties is more and more extended,
using different values for different temperatures and pressures, the choice can be made to put
the constants in tables and to interpolate between the constants. A limited description of the
composition can be given by specifying characteristic ratios. Examples are the H/C-atom ratio
and O/C-atom ratio or fuel-air-ratio. When the fuel-air-ratio is used, the amount of fuel added so
far in the gas turbine is meant, not the actual amount of fuel present.
If this approach is used, the thermodynamic properties have become variables, depending on
temperature, pressure and ratios specifying the composition. In case of the specific heat:

),,(ratiospTCC pp =

Usually, the pressure dependence of the specific heat is indirect. It is caused by the fact that
pressure changes can involve composition changes (i.e. changes in the ratios). The physical
meaning of the terms in this equation can be clear or rather obscure, depending on the ratios
used. For example, if fuel-air-ratio is used, the equation often contains (among others)
thermodynamic data for air (for the limiting case when the fuel-air-ratio is zero), which are
easily imaginable. If H/C and O/C-ratios are used, the terms often have a more empirical
character, which makes it less easy to understand the equations.

Increasing the accuracy of the models can be achieved by taking smaller steps in ratios,
temperature and pressure, making the tables larger and larger. This will take more computer
memory. Another way of achieving better predictions is by improving the interpolation. Linear
interpolation can produce inaccurate results if the function is very non-linear. Better results are
found by interpolating using curves. An example of using curves for interpolation is ‘spline-
interpolation’ using parabolic lines, and logarithmic interpolation using logarithmic functions.
Improving the interpolation process takes more computing time, but no extra memory.
Another way of interpolating using curved lines is using the tables to make least-squares-
polynomials. An advantage compared to the previously described interpolation is that this
interpolation is only carried out once: when the polynomial is determined (not during the
program calculations, but during programming). Using these polynomials, values for
thermodynamic properties can be calculated easily. Generally speaking, with a higher degree
polynomial, the results are more accurate.

Although the composition of the flows is described, composition changes due to changing
temperatures and pressures (e.g. dissociation and evaporation) can only be described if
appropriate ratios are chosen. The H/C and O/C-ratio or fuel-air-ratio are not appropriate,

NLR-TR-2014-150

 26

because these ratio’s only change if different flows are put together, not if dissociation or
evaporation occurs. If for example the ratios like H2O(g)/H2O(l) or CO2/CO are used, the effects
of dissociation and evaporation on thermodynamic properties can be modelled. However, the
number of ratios needed will be quite large, so the question emerges whether it wouldn’t be
wiser to use a complete description of the medium in concentrations (or fractions) of all the
species present. That approach is used in the next gas model to be described.

Examples of this type of gas model are the gas models used in GSP 7.0 and GasTurb 7.0 & 8.0.
These models are described thoroughly in appendix C. In both models, the composition of the
working medium in the gas turbine is determined from the fuel-air-ratio only, and important
thermodynamic functions are calculated using the fuel-air-ratio and seventh degree polynomials,
dependent on the temperature. The entropy is also a function of pressure. Only the GasTurb gas
model calculates the dynamic viscosity.

An important difference between GasTurb 7.0 and GasTurb 8.0 is that version 8.0 offers users
the possibility to choose from (a limited number of) different gas turbine fuels, where GasTurb
7.0 always assumes jet fuel. However, the approach used for the gas model is the same in
GasTurb 7.0 and GasTurb 8.0. The fuel-air-ratio is used in both to account for variations in the
composition.

3.3 Variable composition gas model
Although the temperature dependent specific heat gas model, described in paragraph 3.2,
produced already more accurate results than the constant specific heat gas model, the
applicability of this model was still rather limited, because of the trouble in describing
composition changes. A logical extension of the model is describing the composition of the
medium by the concentrations or fractions of the species present. Now, the large variety in
compositions encountered in gas turbines can be described accurately and the different
thermodynamic properties have become a function of the complete composition, pressure and
temperature. For cp:

()ncompositioeqpTCC pp .,,=

To find the values for thermodynamic variables for a mixture, the first step can be calculating
the values for the individual species calculated. The values for the mixture are the weighted
average of the values for individual species (see for example the gas model described in
paragraph C.4). In this case, the terms in the above equation have a clear physical meaning.

NLR-TR-2014-150

 27

Now that the influence of composition changes on thermodynamic properties can accurately be
modelled, the question arises, how to model changes in composition. An easy way to do this is
by including the possibility to calculate equilibrium compositions as well as frozen (=constant)
compositions. The equilibrium composition is the composition that results when all the
reactions have reached equilibrium: then the formation of all species is equal to their
destruction.

An example of a variable composition gas model is present in ‘The Computer Program for
Calculation of Complex Chemical Equilibrium Compositions and Applications’ (CEA). A
description of this program can be found in (Gordon, Ref. 15) and (McBride, Ref. 30). This
program, developed by NASA, is capable of calculating rocket performance, Chapman-Jouguet
detonation waves, shock tube parameters for both incident and reflected shocks and chemical
equilibrium compositions. The chemical equilibrium compositions can be calculated when one
of six combinations of two thermodynamic state functions is specified. This program contains a
lot of thermodynamic data, valuable for large temperature ranges up to 20000 (K). In paragraph
C.4 the gas model of the CEA-program is described.

3.4 Variable composition kinetic gas model
The modelling of composition changes in the variable composition gas model was greatly
improved compared to the temperature dependent specific heat gas model by introducing the
possibility to calculate equilibrium and frozen compositions. However, this is still a limited
chemistry description.

A further improvement in the gas model can be achieved by taking into account other chemical
situations than equilibrium and frozen. In this model, the thermodynamic functions remain (in
general) functions of temperature, pressure and composition. For cp:

()ncompositioeqnonpTCC pp .,, −=

These non-equilibrium compositions can in general be calculated in several ways. One is by
adopting a kinetic scheme, and calculating the concentrations as a function of time using the
reaction rate equations (see appendix B). This will, however, involve a large computational
effort, because the ongoing reactions are coupled and will involve changes in temperatures and
concentrations, thereby influencing reaction rates.
Several other ways are also proposed to predict non-equilibrium (and non-frozen) compositions.
Keck (Ref. 24), for example, proposed a ‘Rate-controlled constrained-equilibrium theory’. Here,
a sort of equilibrium is calculated, but this equilibrium is assumed to be constrained by kinetic
schemes and possibly other constraints.

NLR-TR-2014-150

 28

4 The new GSP 8.0 gas model

4.1 Choice of a new gas model
When looking at gas models, one should consider the applicability of the model as well as the
fidelity (accuracy). The GSP 7.0 gas model is unfit for implementing a better emission model
with variable fuel specification and two-phase flows, because it lacks both fidelity and
applicability:
• The polynomials used to calculate thermodynamic properties as functions of temperature,

pressure and fuel-air-ratio are only valid for temperatures lower than 1600 (K).
• Using (only) the fuel-air-ratio to determine compositions, it is not possible to model the

effects of changing compositions due to (e.g.) evaporation or dissociation on gas properties.
• No chemistry model is present to find the compositions when evaporation or dissociation

occurs.
• Using the fuel-air-ratio to determine compositions is not appropriate if a large flexibility in

fuel compositions (especially to be expected for gasification products) is to be handled.

The chemistry model mentioned (in the third point) is not used for combustion and emission
calculations, because the combustion chamber has its own chemistry modelling. However,
because of increased amounts of water due to water/steam injection and because of the high
turbine inlet temperatures encountered in today’s high-pressure gas turbines, evaporation and
dissociation are also likely to occur outside the combustion chamber. Therefore, evaporation
and dissociation effects should also be modelled in other components than the combustion
chamber.

Because of the second and fourth mentioned shortcoming, the fuel-air-ratio has to be
abandoned, and the third point necessitates the implementation of (improved) chemistry
modelling. When implementing a new gas model, attention has to be paid to validity at higher
temperatures.

Instead of the fuel-air-ratio, other ratios could be applied to describe the composition. However,
in chapter three it has already been noticed that a number of ratios are necessary to describe the
composition if evaporation and dissociation can occur. The choice was made to describe the
composition using fractions of the species present. This more generic approach enables easy
extending of the gas model when additional species need to be added (e.g. because of exotic
fuels). Another advantage of this approach compared to ratios is that the composition in species
is easily imaginable and provides better insight into the conditions of the working medium.

NLR-TR-2014-150

 29

As stated above, chemistry modelling is necessary to determine the composition when
evaporation or dissociation occur. The choice was made to enable calculating equilibrium (and
frozen) compositions. Although it is questionable whether the equilibrium will be reached, it
does give the opportunity to model evaporation and dissociation with limited calculation effort.

4.2 Description of the new gas model

4.2.1 General
It is obvious, that the chosen model is a variable composition gas model, as described in
paragraph 3.3. In this new gas model, the gas model from the NASA CEA-program is used to a
large extent. The main difference is that the equilibrium compositions are calculated in a
different way.

In the new gas model, the composition is specified in mass fractions of the species. The mass
fraction is used because the mass flow is used to specify the working medium flow (and not the
volume flow or the number of moles). Also, the relevant thermodynamic (output) data are all
expressed per kg and not per mole or m3. Moreover, the volume of liquid water is assumed to be
negligible, so the water present wouldn’t appear in a composition in volume fractions. Where
needed, the mass fractions can easily be changed into volume or mole fractions. The vector
containing the species possibly present is: (CO2, CO, O2, Ar, H2O(g), H2O(l), H2, CH4, C2H6,
C2H4, C3H8, C4H10, O, H, OH, NO, N2O, CxHy, N2).

Polynomials are used instead of tables, because the polynomials are readily present (in the
NASA CEA-program), and they are assumed to be a good trade-off between calculation power,
memory and accuracy. Polynomials can easily describe non-linear functions using only limited
memory for the coefficients and using only limited computer calculation time. When applying
tables for accurate description of non-linear functions, either the step size must be chosen small,
resulting in large memory needed, or difficult interpolation is needed, resulting in long
calculation times. An advantage of using the NASA data is NASA’s good reputation and the
fact that the data can easily be found in NASA reference papers, which are available in a lot of
places. Because the NASA polynomials are valid for a limited temperature range, two sets of
coefficients are used: one for the polynomial valid from 200 to 1000 (K) and one for the
polynomial valid from 1000 to 6000 (K). With this gas model, the thermodynamic properties
can accurately be found for temperatures high enough.

NLR-TR-2014-150

 30

4.2.2 Relations between thermodynamic and thermal transport properties
The following thermodynamic and thermal transport properties are calculated as a function of
temperature, pressure and composition:
• the specific heat at constant pressure (cp),
• the enthalpy (h),
• the specific gas constant (Rg),
• the entropy (s),
• the ratio of specific heats (γ),
• the speed of sound (a),
• the dynamic viscosity (µ).

The calculation of these properties is to a large extent done in the same way as in the NASA
CEA program. Details are shown in appendix H. Here, a few remarks are made.

The specific heat at constant pressure calculated is only valid if the composition remains
constant during changes in temperature (frozen composition). If this is not the case, the
composition change will involve a heat effect and a different specific heat from the one
calculated above will result. Because the calculated specific heat depends on composition
changes, it also depends on the chemistry description applied. Therefore, the NASA CEA-
program not only calculates the frozen composition specific heat but also the equilibrium
composition specific heat. NASA calculates the difference between these two specific heats, the
cp,r (r for reaction), in the iteration procedure used to find the equilibrium composition. Because
GSP doesn’t use the same iteration procedure as NASA, in GSP only the frozen specific heat is
calculated.

The slope of the enthalpy as a function of temperature is fixed: it is equal to the specific heat at
constant pressure. The absolute value for the enthalpy can be chosen. Here, it is determined by
the fact that the enthalpy of a specie at T = 298.15 (K) is equal to its heat of formation at T =
298.15 (K), like in the NASA CEA-program. This is adopted in order to keep the same
coefficients for thermodynamic properties as NASA. As explained in paragraph H.3, it can
prove handy in solving the enthalpy balance.

The ratio of specific heats is calculated in the same way as in the GSP 7.0 gas model. For gases,
this is correct as long as the composition doesn’t change because of dissociation. If the
composition does change it is assumed to be a good approximation. For mixtures containing
liquid water, the values found for γ correlate well with results found by using NASA’s CEA-
program.

NLR-TR-2014-150

 31

4.2.3 Modelling of composition changes
Like the NASA gas model, the GSP 8.0 gas model has a limited description of kinetics, only
using frozen or equilibrium compositions. If the chemical processes are assumed to be slow in
comparison with the residence times in the components, a frozen composition is assumed.
Otherwise, the composition will change and the equilibrium composition is calculated. Because
the gas model only calculates the thermodynamic and thermal transport properties for a flow
under changing temperatures and pressures, composition changes due to mixing of separate
flows (and subsequent reactions) are not modelled by the gas model. Therefore, the most
important composition changes to be modelled are due to evaporation (/condensation) or
dissociation. Because evaporation and dissociation involve conversion between potential energy
and heat, evaporation and dissociation also influence temperature itself. In order to find the
composition and temperature when evaporation or dissociation occurs, the assumption is made
that there is no heat loss (i.e. adiabatic reactions) or pressure loss during the evaporation and
dissociation. The temperature and composition are then found in an iteration procedure solving
the equilibrium composition belonging to a certain temperature and checking the enthalpy
balance (also called energy equation) to see whether the temperature is correct. For an extensive
description of checking the enthalpy balance and for the calculation procedures used to find the
equilibrium composition at a given temperature, appendix H should be consulted. Here some
general remarks are made on modelling of evaporation (/condensation) and modelling of
dissociation.

Modelling of evaporation/dissociation
Usually, the only liquid (apart from fuel) present in the gas turbine will be water. This water can
be water entering the inlet because of rain or because of test programs, to see whether flame out
will not occur when lots of water enters the gas turbine. In old aircraft gas turbines, in the take-
off water was inserted at the entrance of the compressor, to achieve higher thrust. Another
possibility is that water is injected into the combustion chamber as a NOx-abatement procedure.
Young (Ref. 45) studied low-pressure steam turbines and discerns two kinds of non-
equilibrium: thermal non-equilibrium and inertial non-equilibrium. Thermal non-equilibrium is
caused by a temperature difference between droplets and surrounding gases and the fact that the
droplets and water vapour are not in equilibrium. Inertial non-equilibrium is caused by a
difference in speed between the droplets and the surrounding gases. Young concludes that for
applications with small droplets (in the order of 0.1 to 1 µm) in low-pressure steam turbines,
inertial non-equilibrium is negligible in comparison with thermal non-equilibrium. Although the
conditions (including droplet size) in gas turbine components might be quite different, from
conditions in low-pressure steam turbines, inertial non-equilibrium is neglected in the new gas
model.

NLR-TR-2014-150

 32

Young presents a model to describe thermal non-equilibrium, using geometric data and
residence times. Because the number of geometric data for the gas turbine models used by GSP
is to be minimised, the model described by Young is not used.

In the new version of GSP no thermal non-equilibrium is accounted for except for the difference
between frozen and equilibrium compositions. In the inlet, the composition is supposed to be
frozen, because of the very short residence time in the inlet, because the temperatures there are
usually not very high, and because water droplets can be quite big. In all other components the
equilibrium between liquid and gaseous water is supposed to be reached, because temperatures
are usually higher than in the inlet. Also, in compressors and turbines the water droplets will be
dispersed by the rotors and stators. This will result in smaller droplets and shorter times needed
to evaporate.

Modelling of dissociation
Usually, dissociation doesn’t occur at temperatures lower than 1800 (K). In case temperatures in
the gas turbine (outside the combustion chamber) are higher than 1800 (K), dissociation is
assumed to take place, and a new equilibrium is calculated. Because of the high temperatures,
all liquid water is made vapour immediately. Because, on the other side, the temperatures are
assumed to remain limited (below 2200 (K)) outside of the combustion chamber, only
dissociation of carbon dioxide and water, forming carbon monoxide, hydrogen and oxygen, is
assumed to be important. In other words, only the following reactions are assumed to be
relevant:

22 2
1 OCOCO +↔ (4.1),

222 2
1 OHOH +↔ (4.2).

As explained more extensively in appendix H, a system of five equations has to be solved to
find the five unknown fractions determining the equilibrium composition at a given
temperature. Solving this system is achieved by guessing one fraction, calculating the other
fractions for this guess, as well as a new value for this fraction. The deviation between the new
value and the guess is used to find the correct value for the guessed fraction (then the guess is
equal to the newly calculated value) and therefore the correct equilibrium composition. Because
the guessed fraction must be a non-zero fraction, and because of calculation advantages, the O2-
fraction is used for this purpose. However, because of the limited accuracy of (standard) Delphi
calculations, this will give problems if the O2-fractions becomes smaller than 1.10-15. Normally,
this will not be a problem, because this only happens in (very) rich mixtures, especially at low
temperatures, which are not likely to occur outside the combustion chamber.

NLR-TR-2014-150

 33

4.3 Application of the new gas model
The higher accuracy and more extended (variable) composition description of the GSP 8.0 gas
model enable better (component) performance predictions, and more information for the users.
The applicability of GSP 8.0 in general has also increased.

4.3.1 Applying changing compositions
Although evaporation and dissociation usually only occur in the combustion chamber, in GSP
8.0 effects of evaporation and dissociation in other components are also modelled. At the outlet
of each component, two checks are performed. The first one is whether water (liquid or in
gaseous form) is present. If this is the case a verification is made that the equilibrium between
liquid and gaseous water is correct for the temperature and pressure at the component outlet
(except for the inlet of course, because here the composition is frozen). If not, (adiabatic)
evaporation or condensation is assumed to take place, changing the temperature and the
composition as described above (in paragraph 4.2.3).

The second check is a temperature check. If the temperature exceeds 1800 (K), dissociation
becomes relevant, and the (new) equilibrium composition and temperature at the component
outlet are calculated.

Because the checks are only performed at the outlet, a small error may be introduced. In reality,
the composition changes continuously and not with a step at the outlet of the component. In the
compressor, for example, liquid water is assumed not to be compressed. In the current approach,
the quantity of liquid water in the compressor is assumed to stay the same: only at the outlet of
the compressor, evaporation is assumed to take place. Because in reality evaporation occurs
throughout the compressor, more gaseous (and less liquid) water will be present in reality than
GSP assumes. This extra amount of water vapour also has to be compressed. Thus, GSP
underestimates the power needed to compress the medium in the compressor. Changing the
zero-dimensional approach of the components in a one- (or more-) dimensional approach can
solve this problem. However, this bears a lot of consequences, like the importance of the
geometry of the components.

4.3.2 Determining compressor and turbine performance
Now that two-phase flows can occur, a decision has to be made on calculation of power needed
to compress the liquids. The choice has been made to neglect power needed to compress the
liquids (except fuel) in all the components. Also no power is gained when the droplets expand.
The influence of Reynolds number on compressor and turbine performance is accounted for in
GSP 8.0. This was made possible by adding the dynamic viscosity to the thermodynamic and

NLR-TR-2014-150

 34

transport properties that are calculated in the new gas model. Therefore, the following
dimensionless parameters are used to determine compressor and turbine performance:
• Isentropic efficiency,
• Pressure ratio,
• Corrected mass flow,
• Corrected number of rotations,
• Reynolds number index.

Because of the more complete composition description, the calculation of these parameters has
changed. For additional data on the meaning of these numbers and the way of calculating them,
readers are referred to appendix I.

4.3.3 Extensions in the user interface
The improved gas model provides users with more information. In all the components, the
number of possible output parameters has increased. The composition of the working medium
can be generated as output data in the inlet and outlet of all components. Also, the values of
specific heat at constant pressure, enthalpy and entropy can be shown as output parameters in all
inlets and outlets of components.

A change in the inlet is that humidity of air can be simulated now. This can even be rain or lots
of water thrown into the gas turbine for flame out tests. The water can be specified as relative
humidity (not higher than 100%), as volume percentage (water in gaseous form only because
the volume of liquid water is assumed to be negligible) or as mass percentage of the airflow.
Application of water injection into the compressor, done in earlier days to increase thrust in
take-off of aircraft, can be simulated by assuming the water to enter the gas turbine at the inlet.
The results obtained then are of course not exact.

5 Gas turbine combustor models

The gas models described in the previous chapters predict thermodynamic and thermal transport
properties of a given medium under changing temperatures and pressures, also when the
composition changes. However, at certain places in the gas turbine flows with different
compositions are put together. In case of mixing, usually no reactions occur and the new
composition can easily be found by taking the (mass flow) weighted average of the (mass)
composition of the flows coming together. The temperature can be found by solving the
enthalpy balance, as described in appendix H. In combustion processes, however, chemical

NLR-TR-2014-150

 35

reactions occur on a big scale and a special combustor model is needed to provide accurate
modelling.

Another reason to pay special attention to combustion modelling is because the exhaust gas
emissions are (almost) completely formed here and the main target of the work described in this
report is improving GSP’s capability of predicting exhaust gas emissions, using different fuels
and steam/water injection.

One of the difficult things about combustion modelling is that there is a strong interaction
between chemical reactions and aerodynamics: chemical reactions usually have a big heat
release influencing the flow field, while the flow field determines whether species come
together and have the opportunity to react.

In this chapter, firstly a number of approaches for combustion flow modelling are presented.
After that chemistry models are shown. Combustor models comprise a combination of a
chemistry model and a flow model. Optimal yields would be achieved if more complex
chemistry models would be combined with more complex flow models. In this way, the gain
(e.g. better and more information) from applying a more complex model can be used by the
other model. Because of large calculation times, however, combination of both a complex
chemistry and flow model is unattractive for GSP.

5.1 Combustion flow modelling

5.1.1 Black box model
The first and most simple approach is modelling the combustion chamber as a (zero-
dimensional) black box, like the other gas turbine components in GSP. In this black box, no
model is applied to describe the mixing process: mixing is assumed to be infinitely fast and
complete. All properties in the volume are assumed to be uniform. Consequently, no spatial
distributions (e.g. of flow properties) can be calculated and the only possible variations are
time-dependent transient variations. Effects like heat transfer to the walls can be taken into
account.

This zero-dimensional box is called a well-stirred reactor. Only two places in the well-stirred
reactor are important: the inlet and the outlet. Therefore, this flow model doesn’t give
information about the flows during the combustion process. This model can only be a
reasonable approximation if there are no big temperature gradients and if the flow is uniform
enough.

NLR-TR-2014-150

 36

In programs for gas turbine modelling, like GSP and GasTurb, this approach is often used. In
appendix D the combustor models of GSP 7.0 and GasTurb 7.0 & 8.0 are described.

5.1.2 Multi-reactor model
Compared to the black-box approximation, the combustor model can be extended by dividing
the combustion chamber in a number of reactors: these models are so-called multi-reactor
models (or multi-zone models). These reactors can be placed in an array but also parallel. If the
reactors are zero-dimensional (as described in the last paragraph), they are called well-stirred
reactors, and if they are one-dimensional, they are called ‘plug flow reactors’. Also multi-
dimensional reactors can be used, although multi-dimensional modelling is only common
practice for CFD (see paragraph 5.1.4). If big temperature gradients occur, these places can be
used as the border between two reactors. In this way well-stirred reactors can be used, even
though temperature gradients occur.

If a multi-reactor model is used, it is easy to find a favourable trade-off between accurate
modelling and not using too much time, because different types of reactors can be combined. A
multi-dimensional reactor can be used, accompanied by a finer discretisation in those places of
the combustion chamber where the processes occurring are more complex. The most important
combustion zones in a diffusion-flame combustion chamber are shown in figure 5.1.

Figure 5.1 Main zones of a gas turbine combustor (Bruin, Ref. 7)

Examples of multi-reactor models are shown in figures F.1, F.2 and F.3 (in appendix F). These
figures show a big advantage of applying multi-reactor models: different types of combustion
chambers can be modelled using only simple combustion chamber models for different zones.
In this way, the necessary computing time can remain limited.

NLR-TR-2014-150

 37

5.1.3 One-dimensional model
An improvement in the combustion flow model compared to the well-stirred reactor can be
achieved by admitting variations in the axial direction. When implementing this one-
dimensional approach, one must ‘slice’ or ‘discretisate’ in the (axial) x-direction, as shown in
figure 5.2. In each volume that is formed by slicing, the mass, impulse and energy balance are
applied. If chemical reactions occur, conservation of atoms must also be accounted for. Finite-
rate mixing can be modelled by application of macro and micro mixing models.

A1 A2 → An

 x-direction →

Figure 5.2 Slicing in the x-direction

Figure 5.3 Discretisation of a reverse-flow combustion chamber

A problem using this approach is that the solution must be found simultaneously for all the
segments, while the number of equations involved is quite large. Therefore, usually an iterative
procedure is necessary.

An example of a one-dimensional combustor model is the unsteady, finite-rate model
(Rodriguez, Ref. 38), proposed by Rodriguez and O’Brien. In figure 5.3, taken from
(Rodriguez, Ref. 38), the discretisation of a reverse-flow combustor is shown. The space within
the liner and the space around the liner are both sub-divided in discrete elements.

NLR-TR-2014-150

 38

5.1.4 Multi-dimensional model
Further improving the flow modelling in the combustion chamber can be achieved by admitting
variations, and therefore also discretisating, in more than one direction: multi-dimensional
models. These models are often referred to as CFD (Computational Fluid Dynamics) models,
although, strictly speaking, CFD is a much broader term, also including for example one-
dimensional models.

Multi-dimensional models are the most realistic models. In these models, a complete spatial
distribution of flow properties (e.g. temperature) and composition can be found. Because of the
large number of equations and volume elements involved, this approach takes a lot of
computing time and memory space on even the fastest computers. Therefore, it can be advisable
to reduce the number of dimensions if possible. Axisymmetric shapes, like the shape of a
combustion chamber for example, can be modelled quasi two-dimensionally. These models get
extremely complex if an accurate description of turbulence is required. Modelling of turbulent
reactant flows is discussed (in Dutch) in (Peeters, Ref. 35). This book also contains a number of
useful references.

5.2 Combustion chemistry modelling

5.2.1 Flame sheet model
The easiest way of modelling combustion chemistry is by assuming a one-step combustion
reaction (a so-called flame sheet model). In case of a larger than stoichiometric amount of air
this can be a reasonable approximation, given the fact that combustion reactions are usually
quite fast, while conversion from reactants to products is almost complete. A necessary
condition is, however, that the combustion temperatures are not too high, so that dissociation
does not play an important role.

Although a one-step combustion reaction is an easy and sometimes reasonable approximation of
the combustion process, it is not a very realistic approach, because an actual combustion process
involves a great deal of reaction steps. Also, the information given by the model is very limited:
no concentrations of radicals are calculated and only one temperature can be found: the final
temperature at the burner exit assuming no dissociation.
Obviously, this model is inadequate in providing a reasonable description of emission formation
and depletion: unburned hydrocarbons, carbon monoxide and smoke are not assumed to be
present because of the one-step combustion reaction. Nitrogen oxide formation depends
strongly on the temperatures encountered in the different combustor zones and therefore on the
combustion progress. Therefore, the only way of predicting emissions while applying a flame

NLR-TR-2014-150

 39

sheet model is by using empirical equations. These are found by combining measurement data
with relevant gas turbine data (temperatures and pressures), and are usually not widely
applicable.

In GSP 7.0 a flame sheet model is used for the combustion chemistry. Consequently, the
emissions are predicted using empirical equations. Because GSP is primarily used to calculated
off-design effects (see appendix G), the emissions in the design point of the gas turbine are
usually known, and the empirical models can be tuned to the design values in order to enable
more accurate emission predictions. The relevant changes in operation parameters (e.g.
temperatures) compared to the design point are calculated in the form of ratios and the
difference in emissions compared to the design point is predicted. These models are called ratio
models (Bruin, Ref. 7). The main drawback of these models is that their applicability is limited
to new (or revised) gas turbines working under standard conditions. In other words, they can’t
be used (for example) for gas turbines using alternative fuels or for gas turbines with
deteriorated components.

5.2.2 Chemical equilibrium model
An improvement in combustion description can be achieved by applying equilibrium chemistry.
As explained in appendix B, the equilibrium state is the state that the process relaxes to if it is
given enough time: the concentrations of combustion products then remain unchanged as a
function of time. Given the fact that combustion processes are usually rather fast, the
equilibrium can be assumed to be reached.

Clear advantages compared to the flame sheet model are that fuel-rich combustion can be
modelled now and that more information is available, like (equilibrium) radical species
concentrations. Dissociation, likely to occur at the high temperatures encountered in
combustion, can also be modelled now.

Although this model provides a better description of the combustion process it is by itself still
inadequate in predicting exhaust gas emissions: incomplete burning (and subsequent formation
of carbon monoxide, unburned hydrocarbons and smoke) of the fuel can’t be modelled. Also, as
the temperature of the gases decreases, the equilibrium model will predict the formed carbon
monoxide and nitrogen oxide to react to nitrogen and carbon dioxide, if enough oxygen is
present. In reality, the reactions that form carbon dioxide and nitrogen form carbon monoxide
and nitrogen oxides ‘freeze’ (i.e. become very slow) at low temperatures and the carbon
monoxide and nitrogen oxides remain present in the exhaust gases.

NLR-TR-2014-150

 40

The combustion chemistry description in GasTurb 7.0 and 8.0 assumes equilibrium to be
reached in the combustion chamber. However, this is only used to calculate the burner exit
temperature. GasTurb does not include an emission prediction model.

5.2.3 Non-equilibrium and kinetic scheme chemistry
A further improvement compared to the equilibrium model can be achieved by applying a better
description of chemical kinetics. This can be done in a number of ways. One can assume partial
equilibrium: some reactions are assumed to reach equilibrium, others are not. For this last
category of reactions, a (limited) kinetic scheme can be used. As already mentioned in the most
complex gas model described in chapter three, Keck (Ref. 24) has described a way of
calculating a constrained equilibrium.

Another option is making no prior assumptions about equilibrium and only using a kinetic
scheme. However, each kinetic scheme can only be used for a limited range of combustion
conditions (e.g. for equivalence ratios between certain values). In general, bigger schemes yield
better results, but use more computing power. These bigger schemes are only available for a
small number of fuels. The smaller the number of reactions get, the more limited the range
becomes where the kinetic scheme can be applied. Also, there is still a lot of disagreement about
rate constants: quantitatively correct results are difficult to achieve. Large kinetic schemes are
not easy to use in gas turbine combustion chamber modelling, because of the very long
computation time needed to solve the equations (simultaneously).

When this better modelling of chemical kinetics is applied, a reasonable calculation of
emissions can be achieved: the formation and depletion of emissions can be calculated in the
kinetic scheme. For an example of kinetic schemes involving NOx formation and depletion,
readers are referred to (Miller, Ref. 32). In case of a partial equilibrium, the general combustion
can be assumed to be in equilibrium, while emission formation can be described by a kinetic
scheme. One must bear in mind, however, that emission predictions with a deviation of 20 to
30% from the measured values, achieved using CFD, are very good results for the moment.

6 The new GSP 8.0 combustor model

In GSP 7.0, the combustion chamber is modelled as a black box. The chemistry is described by
a one-step combustion reaction, not taking into account dissociation. Because of this limited
chemistry description, empirical equations are used to predict the emission indices of pollutants.
Because of the off-design character of GSP, the emission levels are known in the design point.

NLR-TR-2014-150

 41

Therefore, the model present in GSP 7.0 is an empirical ratio model. Because only jet fuel can
be selected as gas turbine fuel in GSP 7.0 and because the emission indices are known in the
design point, the model suits the needs.

GSP 8.0, however, must have the possibility to predict the effect of applying different fuels and
steam/water-injection on exhaust gas emissions. Therefore, the chemistry and flow modelling
are improved. In the new combustor model, an approach is used similar to (Bozza, Ref. 6).
First the combustion flow model is described and after that the chemistry model, where special
attention is paid to emissions modelling.

6.1 Flow modelling
The GSP 8.0 combustor model is a multi-reactor model: the combustion chamber is divided into
a variable number of zones (reactors). Only the processes within the liner are simulated, and the
combustion chamber modelling starts at the (first) flame front. This means that mixing or
vaporising prior to combustion is assumed to play a negligible role in the combustion (and
emission formation) process.

Figure 6.1 Schematic of a reactor

A general picture of a reactor is shown in figure 6.1. The reactors are of the well-stirred type,
assuming infinitely fast mixing and uniform properties for each reactor. In each reactor, four
flows can enter: the flow from the reactor before and three flows (in figure 6.1 denoted by one
arrow) newly entering the liner of the combustion chamber: a fuel flow, a flow of inert species
(e.g. water or steam) and a flow of the oxidant, usually air, coming from outside the liner.

NLR-TR-2014-150

 42

Figure 6.2 Simple example of a multi-reactor arrangement

A multi-reactor model is an array of reactors. The first reactor is the (first) flame front, that is
modelled as a plane. The number of reactors is variable and can be chosen by users. Applying
more reactors can improve the accuracy, but also results in longer computation times. No
attempt is made to model the distribution of the cooling air outside the liner over the different
zones inside the liner. To do this accurately would necessitate the use of CFD, which is
considered a too heavy burden for GSP. The user specifies the flow distribution of the cooling
flow in the design point, which can be reasonably estimated, and this distribution is kept
constant under off-design operating conditions. This constant flow distribution may cause
degradation of the results for operating points largely deviating from the design point.

In figure 6.2 an example of modelling a diffusion flame combustion chamber model is shown.
The combustion chamber is divided into three zones: the flame front, primary zone and dilution
zone. All the fuel is added in the flame front, while the flow leaving the compressor is divided
over all three reactors.

6.2 Chemistry modelling
The chemistry modelling is a mix between equilibrium chemistry and kinetic schemes. The
combustion of the fuel, determining the heat release and the temperature, is assumed to reach
equilibrium. This can be justified by the fact that hydrocarbon reactions are generally rapid
reactions (see for example Sturgess, Ref. 41). Justification for this assumption can also be found
in (Hammond, Ref. 16), who compared application of kinetic schemes with an equilibrium
model. Conclusions were that for the exact determination of the composition, an equilibrium
model could not be used, but the completeness of combustion and the temperature could be
fairly well approximated with the equilibrium assumption.
In emission modelling limited kinetic schemes are used. The kinetic schemes use the
temperature and (equilibrium) radical concentrations, determined by the combustion
equilibrium. By doing this, it is assumed that the emission formation itself doesn’t influence the
temperature. Normally, this is a good approximation because exhaust gas emission

NLR-TR-2014-150

 43

concentrations are small. Although the radical concentrations are not equal to their equilibrium
values (Hammond, Ref. 16), the equilibrium radical concentrations are used anyway because
other radical concentrations (determined by kinetics) are not available and because the
deviations from equilibrium are assumed to be small. The assumption is based on the fact that at
the high temperatures that are usually encountered in gas turbines, the combustion process
occurs in a short reaction zone and that the residence time in this reaction zone is rather short
compared to the total residence time in the combustion chamber. Therefore, in the largest part of
the combustion chamber, equilibrium is (almost) reached.

6.2.1 Calculation of the equilibrium temperature and composition
In every reactor, the assumption is made that the equilibrium state is reached at the exit surface
(see figure 6.1). The way of finding the equilibrium temperature is essentially the same as the
one applied in the gas model (see chapter 4 and appendix H) to find the temperature after
dissociation or evaporation.

The most important difference is that the static temperature is used to find the composition,
while the total temperature is used to solve the enthalpy balance. The reason for this is that the
chemistry (rates of formation and depletion of species) is determined by mutual, relative speeds
of molecules (a measure for the number and strength of collisions), and not by the speed the
molecules all have in common. However, the movement of all the molecules together does
affect the heat contained in the flow. Appendix H contains more information on static and total
temperatures and pressures.

Details on the calculation of the equilibrium composition at a given temperature are given in
appendix J. Solving the enthalpy balance is explained in appendix H. Here, some remarks are
made on calculation of the equilibrium composition at a given temperature.

Determination of the equilibrium composition at a given temperature
The procedure used to find the equilibrium composition at a given temperature operates
essentially in the same way as the procedure calculating equilibrium compositions when
dissociation occurs, used in the gas model. Only now, the temperatures encountered can be
higher, and consequently, additional species will appear due to dissociation. Therefore, the
concentration of species O, H and OH are also calculated now. Also, NO and N2O equilibrium
concentrations are calculated now (these concentrations are used by the emission model, to be
described further on), adding N2 to the list of species whose concentrations are to be
determined. Because of the (usually) high combustion temperatures all water is assumed to be
vapour.

NLR-TR-2014-150

 44

Like the determination of the equilibrium composition at a given temperature in the case of
dissociation, described in paragraph 4.2.3, here also a system of equations has to be solved. The
same approach is used here. The O2-fraction is guessed, and for this guess, the other fractions
are calculated. Also a new value for the O2-fraction results from the other fractions. The
deviation between the O2-fraction guess and the new value for the O2-fraction is used to find the
O2- fraction for which the guess and the newly calculated value are equal. Then, the equilibrium
composition is found.

Like in the determination of dissociation equilibrium, a problem arises, when the O2-fraction
becomes smaller than 1.10-15: then the fractions can’t be correctly calculated anymore, because
of limited accuracy of the (standard) Delphi calculations. O2-fractions this low are only likely to
be encountered in fuel-rich areas, especially when temperatures are low. Outside the combustion
chamber fuel-rich zones usually don’t occur. However, within the combustion chamber fuel-rich
zones can be present. Usually, the equivalence ratios needed to find equilibrium O2-fractions
lower than 1.10-15 are above (approximately) 1.7. Because these equivalence ratios are not likely
to be found in combustion chambers, the equilibrium composition at a given temperature can
usually be found.

6.2.2 Exhaust gas emissions modelling

6.2.2.1 General calculation procedure
The general calculation procedure applied is the same for all the exhaust gas emissions. Two
types of emission formation (/depletion) processes are discerned: infinitely fast reactions and
slower reactions. Infinitely fast reactions only take place in flames, in other words, in reactors
where fuel is injected. They produce a step-wise rise in the emission levels. The slower
reactions take place in all the reactors, as long as the conditions are favourable. They determine
the rates of emission formation, i.e. the time-derivatives of the exhaust gas emissions. The
exhaust gas emission levels are found by adding emission contributions from infinitely fast
reactions and by numerically integrating the emission formation rates throughout the
combustion chamber, from one zone exit plane to the other.
The numerical integration is carried out using the trapezium rule, also called the method of
Crank-Nicolson (Kan, Ref. 23):

() () () ()
20101
tt

SN
UHC
CO
NO

dt
dt

SN
UHC
CO
NO

dt
d

SN
UHC
CO
NO

t

SN
UHC
CO
NO

t

SN
UHC
CO
NO

step

∆







































+



















+



















+



















=



















 (6.1).

NLR-TR-2014-150

 45

In this formula, ∆t is equal to (t1 - t0). The time derivative of the emission vector is a function of
the emission vector itself. Therefore, this is an implicit method, and equation (6.1) has to be
solved iteratively. Although this iterative procedure takes more calculation time than not
implicit methods, it is preferred for GSP, because it is always stable, independent of the step-
size used. This is very attractive for GSP because the step-size is equal to the reactor residence
time, and therefore depends on the number of reactors. In this way, a GSP user can choose a
number of reactors satisfying the required accuracy without having to worry about numerical
stability.

Equation (6.1) is the original equation given by Kluiters and solely based on changes of the
concentrations of species caused by chemical reactions. However, the values of the
concentrations of the pollutants at the exit plane of the combustor are the results of two
processes: the mixture of hot combustor flow (within the liner) with cooling flows (through the
liner dilution holes) and the chemical reactions for non-equilibrium pollutant concentrations.
The addition of the mixing effect of flows leads for the pollutant concentrations to a modified
numerical integration method compared to (6.1) and is given by

() () () ()
2001100011
tt

UHC
CO
NO

dt
dVt

UHC
CO
NO

dt
dV

UHC
CO
NO

Vt
UHC
CO
NO

Vt
UHC
CO
NO

V

step

∆
































+
















+
















+
















=
















 (6.1a).

V0 and V1 are representative gas volumes (before and after mixing) at both time steps. The ratio

of these volumes is given by
011

100

1

0

PTW
PTW

V
V

= (6.1.b). The modified trapezium rules assuming that

P1≈P0 (the pressure in the combustor is nearly constant) becomes

() () () ()
20

11

00
1

11

00
0

11

00
1

tt
UHC
CO
NO

dt
d

TW
TWt

UHC
CO
NO

dt
d

UHC
CO
NO

TW
TWt

UHC
CO
NO

TW
TWt

UHC
CO
NO

step

∆
































+
















+
















+
















=
















 (6.1.c)

The soot diameter is exiled from this equation since the soot radius and the total number of soot
particles remain constant by mixing (in contrast to the concentrations).

If more combustion chambers are used in the gas turbine, the NOx concentration exiting the
combustion chamber before is used as the starting concentration. Smoke, carbon monoxide and

NLR-TR-2014-150

 46

unburned hydrocarbons are assumed to be burnt up in subsequent combustion chambers without
influencing new formation or depletion of these emissions.

6.2.2.2 Equations for NOx-emissions
The approach used in NOx prediction is the same as in (Bozza, Ref. 6), (Fletcher, Ref. 12) and
(Barrère, Ref. 3), although some prediction formulas and chemical reactions are added where
thought necessary. As noted in appendix E, NOx in the combustion chamber is the sum of NO
and NO2. In GSP 8.0’s emission formation calculations, the (molar) NOx emissions are
calculated as if they consisted only of NO.

It is to be expected, that this will not introduce serious errors, because amounts of NO2 formed
in combustion processes are small (see e.g. Bokhorst, Ref. 4). NO2 is encountered in two
regions of the combustion chamber: in the (low temperature part of the) flame zone and the
dilution zone. Within the flame zone NO2 temporarily exists. It is formed by reaction (E.1). At
higher temperatures, NO2 reacts back to NO by reactions (E.2) and (E.3). NO2 can only remain
present as a result of chilling effects of could fluid elements. Because of the recirculation in the
primary zone of the combustion chamber, this amount of NO2 will probably remain small.
Formation of NO2 from NO by reaction (E.4) in the dilution zone usually remains limited,
because the temperatures are too high.

Besides, because the amount of NOx is the sum of NO and NO2 it doesn’t matter for the amount
of NOx (when given in moles) whether it is formed by NO or by NO2. The only mistake that is
introduced comes from the facts that NO2 will not participate in the same reactions as NO.
However, the conversion of the (molar) amount of NOx exiting the combustion chamber to an
emission index is done as though the NOx consisted of NO2. This is recommended by ICAO and
is also the standard in emission measurements.

In the new combustor model, four significant NOx pathways are modelled:
• Prompt NOx,
• Fuel NOx,
• Thermal NOx,
• N2O mechanism.
Because the formation of prompt NOx and fuel NOx is usually rapid, both mechanisms to a large
extent involving radicals that are only present in the main fuel reaction zone, fuel NOx and
prompt NOx are supposed to be formed instantaneously. The amounts of prompt NOx and fuel
NOx formed are calculated using equations found in literature and added to the amount of NOx
formed so far. Of course, prompt NOx and fuel NOx are only formed in reactors where fuel is

NLR-TR-2014-150

 47

burned. Thermal NOx and NOx formation by the N2O mechanism are assumed to less rapid than
prompt and fuel NOx formation. They are integrated throughout the combustion chamber.

Prompt NOx
The equation used to calculate the amount of prompt NOx is taken from (Toof, Ref. 42):

[] () [] stoicheqCHprompt NOpfXNO ,φ= (6.2),

where: XCH = mole fraction of hydrocarbon species in fuel (-),
 f(φ) = a function of the equivalence ratio φ (-),
 p = pressure (bar).

The square brackets denote mole fractions (here). In the equation it can easily be seen, that only
hydrocarbon containing fuels are assumed to form prompt NOx. This means, that prompt NOx
formation due to the accelerated Zeldovich mechanism and the N2O mechanism (see appendix
E) is neglected. This is a good approximation because in flames O and OH concentrations with
values above equilibrium are usually only present at temperatures too low to enable the
Zeldovich mechanism to form significant amounts of prompt NOx (Miller, Ref. 32). The
contribution of the N2O mechanism to prompt NOx formation is also discarded because it is
only important at conditions where total NOx emissions are low (Glassman, Ref. 14). Indeed,
measurements described in literature only show significant amounts of prompt NOx in
hydrocarbon flames. For the pressure term, the static pressure is used. The most right term on
the right-hand side of equation (6.2) denotes the NO concentration formed under stoichiometric
equilibrium conditions.

0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009

0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9
φ (-)

f(φ)
(-)

Figure 6.3 The function f(φ) from equation (6.2)

NLR-TR-2014-150

 48

Figure 6.4 Prompt NOx formation as a function of equivalence
ratio for a number of hydrocarbons (Bachmaier, Ref. 2)

The function f(φ), shown in figure 6.3, is determined by the author using measurement data
described in (Bachmaier, Ref. 2) and depicted in figure 6.4. From this article, it is obvious, that
most hydrocarbons have negligible prompt NOx formation at equivalence ratios below 0.6 and
above 1.65. However, of the hydrocarbons used in the measurements, cyclohexane, ethylene
(C2H4), acetylene (C2H2) and, to a lesser extent, gasoline did have significant prompt NOx
formation at equivalence ratios above 1.65. Because hydrocarbons like methane, ethane,
propane and butane don’t produce prompt NOx at these equivalence ratios, the prompt NOx
formation above equivalence ratios of 1.65 is discarded, although this might introduce errors
when applying gasoline or fuels with significant amounts of ethylene and acetylene.
An uncertainty in equation (6.2) is the pressure dependence, especially at high pressures
encountered in aircraft and aero-derivative gas turbines. The pressure dependent terms in the
above equation are the two most right terms on the right hand side of the equation. It can clearly
be seen that a difference in pressures of a factor 40 results in a difference in prompt NOx of a
factor 6.3, if differences in the most right term are discarded. It is questionable whether this
difference is also accounted in reality. No prompt NOx measurements have been found in the
high-pressure regions to validate the square root dependence of pressure. Validations will have
to point out whether this assumption is a good approximation.

NLR-TR-2014-150

 49

Fuel NOx
In predicting the amounts of fuel NOx, the important quantity to be determined is the conversion
fraction, i.e. the fraction of total fuel bound nitrogen that is actually converted to NOx. This
conversion fraction depends strongly on the local combustion environment (e.g. equivalence
ratio and fuel composition), but not on the way in which the nitrogen is chemically bound in the
fuel (see e.g. Glassman, Ref. 14).

In literature, experimentally determined conversion fractions are given for a few low-heating
value combustion processes (Kelsall, Ref. 25; Sato, Ref. 40 and Nakata, Ref. 34) and for
ethylene flames (Fenimore, Ref. 11). These studies show that the conversion fraction can differ
widely and that there are many different factors influencing it. For the moment, no effort is
made in predicting the conversion fraction; the user can specify a constant conversion fraction.
This conversion fraction can be changed for each new group of working points. Because the
amount of fuel-bound-nitrogen is a fuel property, it is also user-specified.

Thermal NOx
For the thermal NOx formation, the extended Zeldovich mechanism is applied:

NNOON +↔+2 (6.3),
ONOON +↔+ 2 (6.4),

HNOOHN +↔+ (6.5).

N2O mechanism
For the nitrous oxides (=N2O)-mechanism, almost all the reactions mentioned in appendix E are
used. Only the last one is omitted, because it is assumed to have a negligible effect. The
reactions are:

MONMON ++↔+ 22 (6.6),

222 ONOON +↔+ (6.7),
NONOOON +↔+2 (6.8),
OHNHON +↔+ 22 (6.9),
NHNOHON +↔+2 (6.10),
NCONOCOON +↔+2 (6.11).

In reaction (6.6), M is a non-reacting collision partner (also called third-body specie) for N2O. It
is only important at low pressures, where reaction (6.6) behaves like a second order reaction
(see appendix B); at high pressures, (6.6) behaves like a first-order reaction, so that M is
omitted. Between the high-pressure and low-pressure case, there is a gradual change between
first order and second order reaction, described by the so-called Lindemann fall-off rate (see

NLR-TR-2014-150

 50

Glassman, Ref. 14). However, for simplicity, here only the limiting cases are described. The
high-pressure case is used for pressures higher than 10 (bar) and the low-pressure case for lower
pressures. For this reaction, N2 is assumed to be the collision partner.

Using these reaction mechanisms for both thermal NOx and the N2O-mechanism, an equation
for the NOx formation rate is derived in the same way as done by Bozza (Ref. 6), Barrère (Ref.
3) and Fletcher (Ref. 12), only with a slightly different reaction mechanism. In this derivation,
all the species are assumed to be in equilibrium, except for NO, N2O and N. N and N2O are
assumed to be in steady state (not a function of time), but not in equilibrium. This last
assumption is taken from (Lavoie, Ref. 27). For N, the steady state approximation is also found
to be valid by (Botros, Ref. 5).

In the derivation, the so-called ‘one-way equilibrium reaction rates’ (Fletcher, Ref. 12) are used.
These rates, denoted by Ri’s, are the product of the forward specific reaction rate constant and
the equilibrium concentrations on the left side of reaction equation ‘i’:

∏
=

=

=
nj

j
eqjfi XkR

1

][(6.12).

For the forward specific reaction rate constant kf, Arrhenius’ law (see appendix B) is used:







 −

= RT
Ea

eATk β (6.13).

Because the equilibrium concentrations are used, this product is also equal to the backward
reaction rate multiplied with the equilibrium concentrations on the right side of reaction
equation ‘i’. Further information on one-way equilibrium rates is provided in paragraph B.1.
Using reactions (6.3) to (6.11), the following equations are found for the time derivatives of
NO, N and N2O:

[] () ()

()11.610.68.65.64.63.6

11.610.68.65.64.63.6

2

2

RRRRRR

RRRRRR
dt
NOd

+++++−

+++++=

αβα

γβ
 (6.14),

[] () ()5.64.63.65.64.63.6 RRRRRR
dt
Nd

++−++= αβα (6.15),

NLR-TR-2014-150

 51

[] ()

()11.610.69.68.67.66.6

11.610.68.69.67.66.6
2

RRRRRR

RRRRRR
dt

ONd

+++++−

+++++=

γ

αα
 (6.16),

where:
[]
[]eqNO

NO
=α (6.17),

[]
[]eqN

N
=β (6.18),

[]
[]eqON

ON

2

2=γ (6.19).

Because of the steady state assumption for N and N2O, the left-hand sides of equations (6.15)
and (6.16) are zero, and β and γ are found as a function of α and the relevant one-way
equilibrium reaction rates. After substitution of β and γ in equation (6.14), the following
equation is found for the NO formation rate:

[] () ()





















++
++

+









++

+
+
+

+
+

+
+

−=

9.67.66.6

11.610.68.6

9.67.66.6

8.611.610.6
8.6

5.64.6

3.6

3.62

1

1
12

1
12

RRR
RRR

RRR
RRRR

RR
R

R
dt
NOd

α
α

α
α (6.20).

This equation gives the NO formation rate, which is assumed to be equal to the NOx formation
rate, as a function of the temperature, the NO concentration and a number of equilibrium
concentrations. It is obvious that the left-hand term between the curly brackets is thermal NOx
formation, while the right-hand term is due to the N2O mechanism. Because the one-way
equilibrium reaction rates can be calculated using the forward reaction rate with the appropriate
equilibrium concentrations as well as the backward reaction rate with the adhering equilibrium
concentrations, the number of equilibrium concentrations to be calculated can be minimised. In
this case, only the NO and N2O equilibrium concentrations are calculated, and not the N, NCO
and NH equilibrium concentrations.

6.2.2.3 Equations for other emissions
The other three pollutant levels predicted are for carbon monoxide (CO), unburned
hydrocarbons (UHC) and smoke.

Carbon monoxide emissions
In calculating carbon monoxide emissions, the assumption is made that the fuel reacts in a one-
step infinitely fast reaction to carbon monoxide and water:

NLR-TR-2014-150

 52

OHyxCOOyxHC yx 22 2
)

42
(+→++ (6.21).

This reaction is only used for emission calculations; the temperature is calculated using the
combustion equilibrium assumption. The reaction is assumed to take place in every reactor
where fuel is inserted. The CO formed is supposed to be oxidised to CO2 in the subsequent
reactors of the combustion chamber. The assumption that the fuel oxidation to CO is quickly
achieved in the thin fuel reaction zone, while the slower subsequent oxidation of CO to CO2 is
achieved in the zones after, is often made in literature, see for example (Sturgess, Ref. 41;
Hammond, Ref. 16 and Westenberg, Ref. 44).

In the literature, a number of CO oxidation reactions are given, but most of the authors agree
that the following reaction is the dominant reaction:

HCOOHCO k + →←+ 2
22.6 (6.22).

The H and OH radicals are formed by reactions involving the water formed by equation (6.21).
Assuming that this is the only CO removing (or forming) reaction, together with the assumption
that the O and OH concentrations are equal to the equilibrium values and together with the
conservation of carbon atoms:

[] []() [] []() mequilibriuCOCOCOCO 22 +=+ (6.23),

the following equation can be found for the rate of carbon monoxide removal (Chleboun, Ref.
8):

[] [] []
[] [] []()eq

eq

eq
eqf COCO

CO
CO

OHk
dt
COd

−











+−=

2
22.6 1 (6.24).

In this equation, the k6.22f is the specific forward reaction rate constant of equation (6.22). The
equation is integrated through the combustion chamber zones like the equation for NOx
formation (6.20).

This equation is able to model the effect of rapid reaction down towards equilibrium CO
concentration (because of the minus sign and the most right term on the right hand side) at
relatively high temperatures and also to simulate the effect of frozen high CO concentrations

NLR-TR-2014-150

 53

due to sudden quenching. In the latter case, the specific reaction rate constant will suddenly
decrease to a very low value, thereby preventing further rapid CO oxidation.

Because of the large integration steps used and the high CO oxidation rates in the flames,
equation (6.24) could very well predict very low CO concentrations. Because these very low
concentrations are not realistic, the CO formation rate calculated using equation (6.24) is only
used if the calculated CO concentration is higher than the equilibrium concentration. In other
cases, the equilibrium CO concentration is used.

Unburned hydrocarbon emissions
To predict the emission levels of unburned hydrocarbons, again a global one-step hydrocarbon
oxidation reaction is used, like (6.21). The possible hydrocarbon fuels to be selected (see
appendix J) are divided into two categories. The first category contains jet fuels and diesel.
These fuels generally contain large molecules. According to NASA (McBride, Ref. 30), the
average properties of Jet-A can be described by assuming that it exists of C12H23-molecules.
When a jet fuel or diesel is chosen as fuel, the assumption is made that they consist of C12H23,
and that they react according to the following equation (Pratt, Ref. 36):

222312 2
111126 HCOOHC +→+ (6.25).

In (Pratt, Ref. 36), the following equation is given for the rate of C12H23-consumption:

[] [][]223124

12200815.0

0

5.112312

2
1

10
910 OHCTe

p
p

dt
HCd T





 −








−=







 −

−

 (6.26).

This formula can only be used for temperatures above 555 (K). At lower temperatures, the
fourth term on the right-hand side becomes negative and C12H23 would be formed again.
However, this is not possible because reaction (6.25) is assumed to be a one-way reaction.
The second category of hydrocarbon fuels consists of natural gas and user specified
compositions. Here, the flow of hydrocarbons entering the combustion chamber is converted to
a concentration assuming that the molar mass of the hydrocarbons is the same as the methane
molar mass. The burning rate of methane is taken from (Dryer, Ref. 10):

[] [] [] 8.0
2

7.0
4

48400
2.104 10 OCHe

dt
CHd RT







 −

−= (6.27).

NLR-TR-2014-150

 54

The UHC level is found by integrating equation (6.26) or (6.27). In every reactor where fuel
enters, C12H23 or CH4 is assumed to be formed.

Smoke (soot) production
A number of smoke properties are described in (Appleton, Ref. 1). It appears that the soot
formed in flames only weakly depends on the conditions where it is formed. For example, the
soot formation is little affected by the type of flame (premixed or diffusion). Soot primarily
contains carbon, although also hydrogen and oxygen can be present. Concerning structure, soot
particles are roughly spherical and grouped together in a necklace-like fashion.
The smoke emission model is based on the above mentioned statements. It combines a smoke
formation model with a model describing the subsequent oxidation. The smoke formation model
is an empirical equation, taken from (Rizk, Ref. 37). However, the equation is modified. The
original equation is:

()
()









−⋅−

⋅
=

sz

T

pz

pz

FAR
eH

TWF
pFAR

S
sz001.0

5.1

3

2
3 00515.01180145.0 (6.28),

where: FARpz, FARsz = (primary / secondary zone) fuel-air-ratio (-),
 p3 = combustion pressure (kPa),
 F = fraction of total air used in primary zone combustion (-),
 W3 = oxidant (often air) mass flow (kg/s),
 Tpz, Tsz = (primary/secondary) zone temperature (K),
 H = hydrogen mass percentage in fuel (-).
This equation is based on measurements in diffusion flame combustion chambers and describes
soot formation as well as oxidation. Because soot formation is a relatively poorly understood
process, certainly compared to soot oxidation, this formula is modified in a way only to predict
soot formation (i.e. by leaving the most right term between brackets out of the equation). For
soot oxidation, more extensive, less empirical equations are used. Two other changes are made
to equation (6.28).

The first change made is that the fuel-air-ratio term is replaced by the equivalence ratio,
multiplied with the stoichiometric fuel-air-ratio. This change serves two purposes. The first is
that the formula is now also valid if the oxidant entering the combustion chamber is not air. In
this case, the fuel-air-ratio can’t be determined by dividing the fuel and oxidant mass flows.
Now, the equivalence ratio is calculated, which is also defined if the oxidant is not air, and the
stoichiometric fuel-air-ratio only depends on the fuel composition. The second purpose of this
change is that the formula produces more realistic smoke formation values if low-calorific-value
fuels are used. These fuels normally have a high (mass based) fuel-air-ratio, which would result

NLR-TR-2014-150

 55

in high emission levels predicted by (6.28), because the soot produced varies linearly with the
fuel-air-ratio. In reality, it is not likely that low-calorific-value fuels would produce so much
more soot. In case of low-calorific-value fuels, the stoichiometric fuel-air-ratio applied is an
average value for high-calorific-value fuels. In this way, the formula predicts about the same
emission levels (for equal hydrogen mass percentages in the fuel) for both types of fuel. Further
investigations could be used to verify if both types of fuel indeed produce equal amounts of
soot.

The last change made to (6.28) is that for F, the total oxidant inserted so far into the combustion
chamber is used. In this way the formula can also provide estimates of smoke formation, in
combustion chambers where fuel is inserted into other zones than the primary zone. Applying
these changes, formula (6.28) becomes:

() 5.1

3

2
3 180145.0 H

TFW
PFAR

S stoich −
⋅

=
φ

 (6.29).

The second part of the smoke model describes soot oxidation. Nagle and Strickland-Constable
(Ref. 33) originally developed the equations, but their validity was reinforced in (Appleton, Ref.
1). The theory is primarily valid for small soot particles. For deeper backgrounds on the model,
readers are referred to (Appleton, Ref. 1).

The smoke oxidation rate is presented in the form of the overall specific surface reaction rate,
which is given by:

()xpk
pk

pk
x OB

OZ

OA −+












+
= 1

1
12

2

2

2ω (6.30),

where: ω = Specific surface oxidation rate (g/cm2/s);

2Op = partial pressure of O2 (atm);

The unknown terms in the equation can be found by applying the following equations:

BO

T

kp
k

x

2

1

1

+
= (6.31),







 −

= RT
A ek

30

20 (6.32),







 −

−⋅= RT
B ek

2.15
31046.4 (6.33),

NLR-TR-2014-150

 56







 −

⋅= RT
T ek

97
51051.1 (6.34),









= RT
Z ek

1.4

3.21 (6.35).

The calculation procedure is as follows. First, the smoke formation is found by application of
formula (6.29). This formula results in a smoke (mass) concentration. This concentration is
converted into a number of spherical smoke particles per unit of combustion gases. This number
is, of course, dependent on the radius of these spheres. The user can specify this radius. From
literature, a standard value of 40 (nm) is taken.

Figure 6.5 Relation between particulate mass
loading and smoke number (Girling, Ref. 13)

Once the smoke particles are formed, they can be oxidised in subsequent reactors. The smoke
surface oxidation rate is calculated using (6.30). Applying a constant average soot density of
1800 (kg/m3), this surface oxidation rate is converted into a rate of radius change. At the end of
the combustion chamber the number of spherical particles and their radii are used to find the so-
called ‘particulate mass loading’. Using figure 6.5, the particulate mass loading can be
converted into the smoke number.

If the fuel is not entirely injected into the primary zone, new particles can be generated in
subsequent reactors, where particles formed in the primary zone have already become smaller.

NLR-TR-2014-150

 57

In that case, particles with different radii would exist. For simplicity, the different radii are
weighted averaged over all the particles, although this does introduce (limited) errors.

6.2.2.4 Tuning the emission model
The exhaust gas emission model presented so far can be used to predict values for emissions
without prior knowledge of emission levels determined (e.g. measurements for certification
purposes) for the gas turbine. However, GSP is primarily used for off-design gas turbine
performance calculations. Therefore, emission data are known in the design point. These data
can be used to improve emission predictions, by ‘tuning’ the model; i.e. factors in the model can
be changed until the model reproduces the design point emissions. These factors are then kept
constant (at the same value) for off-design situations.
Theoretically, the optimal situation would exist if a model clearly (and explicitly) discerns the
different factors affecting emissions, like:
• fuel properties, including composition, temperature, pressure and fuel flow,
• oxidant properties, including composition, temperature, pressure and mass flow,
• geometric combustion chamber data.

In that case, the tuning can be used to find the value of factors that are constant for different
working points, including application of different off-design fuels. From the above mentioned
influence factors, geometric combustor data will often be constants for different working points
(not in case of variable geometry combustion chambers). The influence of all the factors that
differ from one working point to another should be accounted for in the emission model.

However, in the emission model presented above, not all the relevant factors are accounted for
explicitly and therefore factors constant over all gas working points can’t clearly be discerned.
Because of this, the tuning of the emission model is not optimal, and tuning until the design
point data are reproduced will not guarantee a model that produces accurate predictions under
all varying working conditions. But because the model does take a lot of factors affecting
emissions into account (like fuel properties and oxidant properties), it is assumed that the model
will behave well for varying working conditions.

Assuming that the geometrical data of the combustion chamber, as well as the cooling flow
pattern are known, all emissions can be tuned (at the same time) by varying the length of the
zones, because the zones can be chosen to suit the needs. When the zones vary, so does the
division of the oxidant over the different zones. If the number of reactors is increased, the step-
size in the integration will be decreased and the accuracy will be improved.

NLR-TR-2014-150

 58

There are also a number of factors that can be used to tune the emissions separately. For each of
the emissions, a so-called temperature factor can be varied. This temperature factor, that can
have values between zero and one, determines the relation between the temperature used in the
emission formation reactions, the calculated equilibrium temperature and the temperature of the
cooling flow outside of the liner. If the temperature factor is one, the emission formation
temperature is equal to the equilibrium temperature, and if it is zero, it is equal to the cooling
flow temperature. The temperature varies linearly with the temperature factor. The temperature
deviation from the equilibrium temperature can (for example) be due to non-equilibrium effects,
non-adiabatic combustion and the cool wall layer. Especially for CO and UHC oxidation, this
wall layer is important. By lowering the temperature factor and thereby the emission formation
temperature, the cold layer is made more important.
For the determination of the smoke number, another tuning factor is present: the initial radius of
soot particles. The standard value is set to 40 (nm). In case of bigger particles, the number of
particles will be lower. If all other combustion conditions remain the same, the same radius
decrease rate will be predicted, but because the number and size of the particles will have
changed, the smoke number will also be different from the one found with the other initial soot
particle radius.

7 Validation

In this chapter, a demonstration is given of performance and emission predictions using the new
gas and combustor model. To start with, a model of the GE CF6-80C2 aircraft gas turbine is
used to validate the emission model and predict effects of changing operating conditions.
After that, a model of the GE LM2500-PE industrial gas turbine is used to calculate the effects
of applying a low-calorific-value fuel in an industrial gas turbine designed for natural gas on
performance as well as on emissions. Some remarks on the effects of low-calorific-value fuels
on gas turbine performance were already made in paragraph 2.2. In GSP 7.0 only rough
estimates of these effects could be made. These were achieved by lowering the combustion
efficiency, until the heat release was the same as for a low-calorific-value fuel. However, in
prediction of gas properties errors were made. In GSP 8.0, low-calorific-value fuels can be
specified in detail and consequent effects on performance are calculated accurately.

NLR-TR-2014-150

 59

7.1 The CF6-80C2 model

7.1.1 General
The GE CF6-80C2 is presently used, amongst others, on the Boeing B747-300/400, the Airbus
A310 and the McDonnell Douglas MD-11. In figure 7.1, the general arrangement (GSP model)
of the gas turbine is shown. This turbofan engine with a by-pass ratio of about 5 has a two-shaft
layout. The low-pressure shaft connects the low-pressure turbine with the fan and booster, and
the high-pressure shaft connects the high-pressure turbine with the high-pressure compressor.
The engine pressure ratio is about 30.

Figure 7.1 General arrangement (GSP-model) of the CF6-80C2

Figure 7.2 The CF-6 combustion chamber

NLR-TR-2014-150

 60

7.1.2 Emission predictions
In order to make emission predictions, some combustion chamber data are needed. A picture of
the CF-6 combustion chamber is provided in figure 7.2. It is assumed that the narrow part of the
combustor, completely on the left, is used for fuel evaporation and mixing with air: because of
the relatively small flow area, the speed is probably too high for stable combustion. After this
narrow part, the flow area increases, enabling combustion. This increase in cross-sectional area
also provides a recirculation zone. For some distance, the area remains constant achieving
relatively long residence times, favourable for a good burn out. After that, the flow area
decreases gradually while cooling air is added. Here, the fuel is further oxidised and the gases
are accelerated to speeds favourable for the turbine.

Table 7.1 Zone data for the CF6-80C2 combustion chamber

Zone Flow (exit) area (m2) Length (m) Cooling fraction (-)

Flame front 0.360 0.0000 0.27
Primary 0.360 0.0250 0.06
Secondary 0.360 0.0743 0.22
Dilution 0.1653 0.4000 0.45

For this study, the combustion chamber was divided into the flame front and three subsequent
zones. The flame (front) is assumed to be present in the beginning of the combustion chamber,
where the maximum flow area is reached. The primary zone is assumed to be short and a small
flow of air is added to the combustion gases. After this zone, the somewhat larger secondary
zone comes, where more air is added. The point where the flow area starts to decrease, is the
starting point for the dilution zone. The dimensions of the combustor were estimated using
figure 7.2 and a scale picture. In table 7.1, the zone dimensions are given as well as the cooling
flow division over the zones.

Table 7.2 ICAO engine exhaust emission data for the CF6-80C2 (Ref. 20)

Mode Power
Setting
(%F00)

Time
(min.)

Fuel flow
(kg/s)

Emission indices (g/kg) Smoke
Number

(-)
UHC CO NOx

Take-off 100 0.7 2.353 0.08 0.52 28.06 7.1
Climb out 85 2.2 1.913 0.09 0.52 21.34 -
Approach 30 4.0 0.632 0.20 2.19 8.97 -

Idle 7 26.0 0.205 9.68 43.71 3.74 -

NLR-TR-2014-150

 61

Validation
Once these data were inserted in GSP 8.0, the model was tuned to the emission values from the
ICAO engine exhaust emissions data bank, given in given in table 7.2. The temperature factors
for NOx and smoke were higher than those for CO and UHC, because the cool boundary layer
plays a less important role for NOx and smoke than for CO and UHC. The soot radius of 50
(nm) was a little higher than the value of 40 (nm) found in literature.

Figure 7.3 Emission predictions of the new multi-reactor model and the old ratio-model

The emission indices and smoke number predicted by the GSP 8.0 multi-reactor combustor
model (MR in the figure) are shown in figure 7.3 as a function of thrust. These data are
compared with the predictions of the GSP 7.0 emission ratio model (RATIO in the figure). To
validate the model, data from the ICAO engine exhaust emission data bank (see table 7.2),
denoted by H , and emission levels measured in a test bed, denoted by I , are also shown.
It is obvious that both the ratio model and the multi-reactor model have problems to predict CO
emissions at lower power settings. The multi-reactor model does predict the peak, but at a
power setting higher than where the peak was measured. The NOx-measurements are reasonably
approximated for high power settings by both models. At low power settings, the ratio model
appears to provide better NOx-predictions. For unburned hydrocarbons, no ratio model is
present. The multi-reactor model can well be tuned to the measured emission levels. For smoke,

Steady-State performance plot
CF6-80C2nwv.mdl

CF6-80C2
Validation

GSP 8.0
16:15 november 6, 1998

0.00

100.00

200.00

E
Ic

o6

0.00

10.00

20.00

30.00

E
In

ox
6

0.00

100.00

200.00

E
Iu

hc
6

0.00 50.00 100.00 150.00 200.00 250.00
FN [kN]

0.00
2.00
4.00
6.00
8.00

10.00

S
N

6

RATIO
MR

NLR-TR-2014-150

 62

only one measurement value is available: the smoke number at take-off conditions. This can be
reasonably well approximated by both the models, but whether the values in other working
points are well estimated, can’t be seen. Further investigations will be needed to verify this.
For the case considered here (a revised aircraft gas turbine burning jet fuel), both the models
predict the measured emissions reasonably well. The main advantage of the multi-reactor
model, however, is that the applicability is far wider than the ratio model’s applicability. This is
shown below by determining the effects of turbine deterioration on emissions. After that, the
multi-reactor model is used to predict the effects of differing ambient conditions and application
of alternative fuels on exhaust gas emissions.

Figure 7.4 Effect of turbine deterioration on exhaust gas emissions

Turbine deterioration
In this study, the (high-pressure turbine) deterioration is modelled by an increase of 2% in
turbine mass flow and a decrease of 4% in the (isentropic) turbine efficiency. In the (non-
deteriorated) design point, the flame front is assumed stoichiometric.
In figures 7.4 and 7.5, the effects on emissions are shown. In both figures, the solid lines show
the (GSP 8.0) multi-reactor predictions for a non-deteriorated turbine, and the dashed lines for a
deteriorated turbine. In the top graph of figure 7.5, the multi-reactor results are compared with
(GSP 7.0) ratio model NOx predictions for a non-deteriorated turbine (dashed single dotted line)
and a deteriorated turbine (dashed double dotted line). The ratio model predicts lower NOx-
emissions for the deteriorated engine for all power settings, which is not realistic. This shows

Steady-State performance plot
CF6-80C2nwv.mdl

CF6-80C2
Turbine deteriation

GSP 8.0
17:16 november 6, 1998

0.00

100.00

200.00

EI
co

6

0.00

10.00

20.00

30.00

EI
no

x6

0.00

100.00

200.00

EI
uh

c6

0.00 50.00 100.00 150.00 200.00 250.00
FN [kN]

0.00
2.00
4.00
6.00
8.00

10.00

SN
6

MR deteriorated

MR standard

NLR-TR-2014-150

 63

the limitations of ratio and related P3T3 models. These models assume fixed standard engine
and operating condition relations between combustor condition parameters (i.e. P3, T3,
combustor inlet mass flow and fuel flow). With deterioration these relations are changed, so
more detailed models (such as multi-reactor models) are required.
In the second and third graph of figure 7.5, the (flame front) equivalence ratio and (static)
temperature are shown, determined by the multi-reactor model. The multi-reactor model
predicts that deterioration makes the flame front rich for high power settings, and brings the
flame front closer to stoichiometric for lower power settings. This is to also to be expected,
because more fuel is injected to achieve equal thrust. This results in higher (flame front)
temperatures for lower power settings and about the same temperatures for high power settings
(see third graph). The multi-reactor model appears to predict these effects correctly.

Figure 7.5 Comparison between multi-reactor model and ratio model for deteriorated turbine

The results (see figure 7.4) are a (thermal) NOx decrease at higher power settings because of
lower oxygen concentrations, and a NOx increase for lower power settings. Also, (slightly)
lower smoke emissions and a movement of the peak in CO and UHC to lower power settings
are predicted.

Differing ambient conditions
In figure 7.6, the effect of ambient temperature and relative humidity on emissions is shown (as
a function of thrust). The solid line gives the predictions for standard (dry air) ISA conditions.
The dashed line gives the predicted emissions for a relative ambient air humidity of 100%

GSP Output Table Graph
File: C:\User\Steven\Delphi\MR_vs_Ratio.DB

CF6-80C2 GSP 8.0
22:07 november 12, 1998

0.0
5.0

10.0
15.0
20.0
25.0
30.0

EI
no

x6

0.4

0.6

0.8

1.0

1.2

EQ
ra

tC
he

m
_c

6_
i0

0 50 100 150 200 250
FN [kN]

1500.0

1800.0

2100.0

2400.0

2700.0

Ts
_c

6_
i0

RATIO deteriorated

RATIO standard

NLR-TR-2014-150

 64

(denoted by Rel. H. in the figure), and the dashed dotted line gives emission predictions for an
ambient temperature 10 (K) higher than ISA (denoted by ISA+10). It is obvious that the nitric
oxide emissions are substantially decreased if the relative humidity increases. This was to be
expected, because more water leads to lower combustion temperatures, and thus lower thermal
NOx production. This can also be the explanation for the slightly increased smoke predictions:
the soot burnout is worse because of the lower temperatures. The effect on CO and UHC is
limited.

The higher ambient temperatures obviously result in increased NOx emissions. This is logical
because of the higher temperatures in the gas turbine, and thus also in the combustion chamber.
As expected, the higher temperatures result in lower smoke emissions, and the peak in CO and
UHC production occurs at slightly lower power settings.

Figure 7.6 Effects of changing ambient conditions on exhaust gas emissions

Alternative fuels
Finally, the effect of applying alternative fuels on NOx emissions was studied. The results are
shown in figure 7.7. The solid lines are emission predictions for Jet-A, the dashed lines for
methane and the dashed dotted lines for hydrogen. Both methane and hydrogen were supplied at
a temperature of 288.15 (K) (the same supply temperature as Jet-A) in gaseous form.

Steady-State performance plot
CF6-80C2nwv.mdl

CF6-80C2
Ambient Conditions

GSP 8.0
16:58 november 6, 1998

0.00

100.00

200.00

EI
co

6

0.00

10.00

20.00

30.00

EI
no

x6

0.00

100.00

200.00

EI
uh

c6

0.00 50.00 100.00 150.00 200.00 250.00
FN [kN]

0.00
2.00
4.00
6.00
8.00

10.00

SN
6

ISA+10
Rel. H.

Standard

NLR-TR-2014-150

 65

For low power settings, hydrogen gives the lowest amount of NOx emissions, and for high
power settings the highest amount of NOx emissions. The NOx emissions achieved by burning
methane are for all power settings lower than those achieved when burning Jet-A. These results
were further studied by looking at the (static) temperature in the flame front (not necessarily
stoichiometric) and the equivalence ratio in the flame. Although the other zones are also
important for NOx-formation, here only the flame temperature and equivalence ratio are shown,
because in the flame the highest NOx-formation speeds are encountered. The difference between
the emission index for methane and Jet-A is due to the lower flame temperature; the equivalence
ratios are practically the same. For hydrogen however, the flame temperature is lower than the
flame temperature for Jet-A, but so is the equivalence ratio. Therefore, more oxygen is available
in the hydrogen flame, resulting in higher thermal NOx-formation.

Figure 7.7 Effects of applying alternative fuels (methane and hydrogen) on NOx

Steady-State performance plot
CF6-80C2nwv.mdl

CF6-80C2
Alternative fuels

GSP 8.0
18:45 november 6, 1998

0.0

10.0

20.0

30.0

40.0

E
In

ox
6

1400
1600
1800
2000
2200
2400
2600

Ts
_c

6_
i0

0.00 50.00 100.00 150.00 200.00 250.00
FN [kN]

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

E
Q

ra
tC

he
m

_c
6_

i0

CH

H2

Jet-A

NLR-TR-2014-150

 66

From this investigation, it could be concluded, that hydrogen combustion results in higher NOx
emissions for high power settings. However, this is not (entirely) true. The reason for this is that
a few things are neglected in this study. The first thing is the fact that hydrogen has a higher
burning speed than Jet-A. For this reason, preferably a different (smaller) combustion chamber
should be designed, with smaller flow areas, resulting in higher flow speeds, lower residence
times and thus lower NOx values. The second thing is that, also because of a different
combustion chamber applied, the flow pattern could very well be different resulting in a higher
equivalence ratio in the flame zone. Because this results in a higher temperature, but also a
lower amount of oxygen, it is not clear if this will mean an increase or decrease in NOx (around
stoichiometric equivalence ratios an increase will be more likely). A third thing is that hydrogen
can also be fed in liquid form. In that case, a heat exchanger can be used to evaporate the
hydrogen. This heat exchanger draws the energy necessary for evaporation from the air coming
from the compressor, resulting in lower combustion temperatures, and consequently lower NOx
emissions.

7.2 The GE LM2500 model

7.2.1 General
The GE LM2500 is a single-shaft industrial gas turbine, derived from the CF6 family of aircraft
gas turbines. There are several types of this gas turbine, delivering different shaft powers. Here,
the GE LM2500-PE is studied. The mass flow handled by this engine is 68 (kg/s) and the design
engine pressure ratio is 18.65. The layout of the gas turbine is shown in figure 7.8. The second
turbine is a free-power turbine, which can be connected to (e.g.) an electricity generator.

Figure 7.8 GSP model of the GE LM2500

NLR-TR-2014-150

 67

7.2.2 Performance predictions
The gas turbine is designed for natural gas. According to GE, the molar mass of the fuel was
16.04 (g/mole) and the heating value 47680 (kJ/kg). This molar mass is the value for methane,
but the heating value is somewhat lower than the heating value of methane. This indicates that
the fuel probably contains some larger hydrocarbons and probably inert components like
nitrogen.

Table 7.3 Composition of biomass gasification products

Component Volume fraction (%)

CO2 15.6

CO 8.8

H2O(g) 24.0

H2 7.4

CH4 5.2

C2H6 0.3

C2H4 1.1

N2 (incl. Ar) 37.6

The off-design fuel consists of biomass gasification products, obtained from the biomass
gasifier at the Laboratory for Thermal Power Engineering at Delft University of Technology
(see Hoppesteyn, Ref. 19; De Jong, Ref. 22). In table 7.3, the composition of the gasification
products is given. The gases contain a lot of water and nitrogen gas, and as a result the fuel
heating value is rather low: about 4 (MJ/kg) at 288.15 (K).

When low-calorific-value fuels are used in gas turbines, the fuel flows are relatively high,
resulting in a large compression power needed. In this study, it was assumed that the air fed to
the gasifier was compressed to 5 (bar) with an isentropic efficiency of 0.9. At this pressure, the
gasification process was assumed to take place. Subsequently, the fuel was further compressed
from 5 (bar) to the pressure needed for injection into the gas turbine.
The compression power needed to compress the low-calorific-value fuel to the injection
pressure is calculated within GSP itself. Assumed was an isentropic compression efficiency of
0.85. The compression power needed to compress the air from 1 to 5 (bar) was partly hand
calculated using formulae (C.44) and the following expression:

compispaircomp TcmP η/∆⋅⋅= (7.1)

NLR-TR-2014-150

 68

Because the amount of air needed (mair) is unknown in the program, an attempt was made to
relate it to the fuel flow. This was done by assuming that all the nitrogen in the low-calorific-
value fuel (see table 7.3) originates from the air used in the gasification process. During the
gasification process, the air is assumed to be diluted by other gasses, generated by the
gasification. In that case, the relation between the amount of air needed and the fuel flow is
37.6/78.084 = 0.48 (kg/s) of air needed per (kg/s) fuel (the 78.084 is the volume percentage of
nitrogen in air). For γ = 1.4, the compression process involves an isentropic temperature change
from 288.15 (K) to 456.38 (K) (using equation (C.44)). Together with assumed values of 0.9 for
the compressor efficiency and 1005 for the specific heat at constant pressure, the compression
power needed (in MW) equals 0.090 times the fuel flow. Both compression powers described
were subtracted from the power delivered by the power turbine. In figure 7.9, the GSP results
are given.

Figure 7.9 Effects of low-calorific-value alternative fuel on performance

In this figure, the solid lines show the results with natural gas (LNG) and the dashed lines with
the low-calorific-value (LCV) biomass fuel. Pnetc is the power that is left, when both
aforementioned compression powers are subtracted from the power generated by the power

Steady-State performance plot
LM2500PEMGS.MDL

General Perfo
LNG vs. LCF_DUT

GSP 8.0
17:43 September 24, 1998

600.00

800.00

1000.00

1200.00

TT
4.

5

80.00

100.00

120.00

N1
 [%

]

0.00

5.00

10.00

Pc
fu

el
 [M

W
]

0 5 10 15 20 25
Pnetc [MW]

0.00

0.10

0.20

0.30

0.40

ET
A

to
tc

LCV

LNG

NLR-TR-2014-150

 69

turbine. The total inlet temperature of the power turbine (TT4.5) is about the same for both
fuels. However, the second figure shows, that the rotor speed of the power turbine becomes too
high, if the same power is to be generated using low-calorific-value fuel. This is due to the large
mismatch between the compressor and the high-pressure turbine, resulting from the large fuel
flow injected. In order to obtain the higher power output, the gas turbine hardware could be
modified (e.g. by an increase in turbine flow capacity) or the compressor load could be
increased (e.g. by taking compressor bleed air to feed the gasifier). The power needed to
compress the fuel from 5 bar to the pressure in the combustion chamber (Pcfuel, see third graph)
is far higher for low-calorific-value fuel than for natural gas. However, this does not result in
lower cycle efficiency (ETAtotc, see fourth graph), if the power delivered is not to become too
high, although the cycle efficiency may well have to be corrected with extra power required for
the gasifier.

In figure 7.10, the effect of applying the alternative fuel on compressor performance is given in
the compressor map. The working line with biomass fuel is the line closest to the stall line.
Although the difference with the working line for natural gas is not very big, hardware
modifications may be necessary to retain the proper stall margin.

Figure 7.10 The effect of applying low-calorific-value fuels on compressor operation

To avoid the high rotor speeds, a fixed power turbine (i.e. single shaft engine) could be used.
However, further studies (not shown here) showed that a fixed power turbine leads to severe
stall problems. For a more complete picture of gas turbine performance using low-calorific-
value fuels, readers are referred to (Locadia, Ref. 29).

Lm2500hc.txt
Scaled to LM2500PEMGS.MDL

LCF vs. LNG
effect in HPC

GSP 8.0
17:29 September 24, 1998

10 20 30 40 50 60 70 80
Wc [kg/s]

0

5

10

15

20

25

P
R

0.7
0.75

0.8

0.85

Nc

0.9

0.95
11.05

h
0.550.6

0.65
0.7

0.75
0.8

0.85

0.9

LCV

LNG

NLR-TR-2014-150

 70

7.2.3 Emission predictions
Secondly, the LM2500-PE industrial gas turbine model described above was used to investigate
the effects of applying alternative fuels in (industrial) gas turbines on the NOx and CO
emissions. The multi-reactor emission model used had similar characteristics as those of the
CF6-80C2 model, assuming similar combustor geometry. The results are shown in figure 7.11.

Figure 7.11 Emission data for the LM2500-PE industrial gas turbine

The relevant properties are given as a function of Pnetc, the power of the free power turbine
minus the power needed to compress the fuel, like in paragraph 7.2.2. First, the fuel flow
necessary to generate the power is given. To find the total pollutant emissions, the emission
indices must be multiplied with this number. In the second diagram, the primary zone
temperature is shown. It is obvious that combustion of low-calorific-value fuel involves a lower
primary zone temperature. This is an explanation for the lower NOx emissions predicted for
low-calorific-value fuel, shown in the third diagram. However, the low-calorific-value fuel used
here did not contain fuel-bound-nitrogen: it was assumed that the nitrogen containing molecules
would be removed before combustion. If this would not be the case, higher NOx emissions
would result. GSP can be used to predict emission levels, when more fuel-bound-nitrogen is

Steady-State performance plot
LM2500PEMGS.MDL

Emissions
LNG vs. LCF_DUT

GSP 8.0
17:50 September 24, 1998

0

4

8

12

W
f4

1500

2000

2500

Tp
z

0

4

8

12

16

20

EI
no

x4

0 5 10 15 20 25
Pnetc [MW]

0

40

80

120

160

EI
co

4

LCV
LNG

NLR-TR-2014-150

 71

present, but this was not done here. In the fourth diagram, it can be seen that relevant values for
CO emissions are only predicted for low-calorific-value fuels. This is probably caused by the
lower (adiabatic flame) temperatures in the combustion chamber, inhibiting CO to oxidise
completely.

7.3 Discussion on the results
The emission predictions for the CF6-80C2 were (reasonably) in accordance with the measured
data after tuning. In the subsequent investigation of effects of ambient conditions, engine
deterioration and alternative fuels, expected effects on emissions were found. Therefore, it has
become clear, that GSP has become a powerful tool to predict the effects of operating conditions
on exhaust gas emissions. In the investigations using the GE LM2500-PE model, it has become
clear that the applicability of GSP has been largely extended. The effects of applying different
off-design fuels on gas turbine performance can now be studied in a reliable way.

During the validation, however, it has become clear that the combustor model has still got some
(important) shortcomings. In general, when tuning the combustor model, it was observed that all
the emissions were extremely dependent on combustor geometry, choice of zones, cooling flow
distribution and other tuning factors. A probable explanation for this is that the number of zones
has been chosen too small, resulting in large integration steps. These large integration steps
result in low accuracy and great sensitivity to boundary conditions. The linearisation applied is
especially inaccurate if the equations integrated are highly non-linear, which could very well be
the case for the emission indices and smoke number.

It has become clear that the NOx-emission modelling produces realistic results when off-design
working points are calculated. Only for the lower power settings, the amount of nitric oxides is
underestimated. This could be due to limited validity of the reaction kinetic data used. Another
probable explanation is that the cooling flow division over the zones changes at lower power
settings, keeping the first zones around stoichiometric equivalence ratios, resulting in relatively
high NOx-emissions. The combustor model predicts equivalence ratios substantially lower than
one for low power settings. A better combustor flow model could be used to verify this.
Because no very rich zones were investigated, the validity of the square root dependence of
prompt NOx on pressure could not be verified. Further research will be needed for this.

The carbon monoxide emission prediction can be used qualitatively, but needs some changes
until it can be used quantitatively. Now, no carbon monoxides are predicted at high power
settings, while at low power settings (very) high carbon monoxide emissions are predicted. In
reality, there is no sudden peak, but first a gradual built up of CO emissions as the power setting

NLR-TR-2014-150

 72

is lowered. The most probable cause for this is that the integration steps are too big: once a
formation speed is predicted that is too high or too low, it has a huge influence on carbon
monoxide levels. Normally high depletion speeds cause a quick temporary depletion. Once the
quantity formed decreases, the depletion speeds get lower. Here, due to the large step size, it
takes some time until the formation speed is recalculated. By that time, the amount of predicted
carbon monoxide is already very low. It should be noted, that in literature, carbon monoxide
emissions are often predicted using a well-stirred reactor, as is also the case in GSP, followed
by a series of (one dimensional) plug flow reactors, which is not the case in GSP. These plug
flow reactors give a better, more detailed description of carbon monoxide oxidation. In GSP, a
good option for better CO oxidation modelling is taking small integration steps in the lower
temperature (dilution) zones. In the higher temperature zones, the equilibrium amounts of CO
can be used. These serve as the start value for a detailed CO integration in lower temperature
zones.

Results not shown here indicate that the prediction of unburned hydrocarbon emission indices
gives some problems for fuels other than jet fuels and diesel. If a jet fuel (or diesel) is selected,
the dependence of the unburned hydrocarbons on power setting and the temperature factor is
comparable to the carbon monoxide case. However, for other fuels, the temperature factor must
be high in order to predict low emission levels at high power settings. Therefore, a better
methane oxidation description may be necessary. If the amount of unburned hydrocarbons is to
be better approximated, the integration step size should be chosen smaller, but even better
would be to use a more extended kinetic scheme.

Finally, the smoke number appears to be reasonably approximated. For low power settings, the
predicted smoke number is low and it becomes higher for higher power settings. Further
investigation has to show whether the smoke number predicted as a function of power setting is
good.

8 Conclusions and Recommendations

The Gas turbine Simulation Program (GSP), after being extended with a gas model accurately
describing compositions and calculating equilibrium compositions, is a powerful tool to predict
effects of operating conditions such as alternative fuels as well as water/steam injection on gas
turbine performance and emissions. This is a significant improvement compared to the last
version of GSP, which (ratio) emission model had a very limited applicability in predicting
effects of operational variables.

NLR-TR-2014-150

 73

The new gas model was successfully demonstrated in the analysis of the effects of low-calorific-
value gas from a biomass gasifier on various performance parameters and emissions. This type
of performance analysis can be used to support decisions concerning engine hardware
modifications.

The new multi-reactor combustor model is a generic structure in which (kinetic) models
describing formation of species, including exhaust gas emission species, can easily be
implemented.

For NOx, CO, UHC and smoke, models have been developed for instantaneous formation in the
flame zone and subsequent formation (/depletion) according to multi-reactor kinetic schemes.
The multi-reactor model is best used as sensitivity analysis tool; i.e. to calculate effects on
performance and emission parameters relative to reference values. The emission models have
been demonstrated on a large turbofan engine. The results corresponded well with measured
emission data and with the expected operating condition effects on emissions.

Improvements in the emission models can be made by better modelling of effects not covered in
a one-dimensional model such as film cooling and division of cooling flows over the
combustion zones. The accuracy of the predictions could probably be improved by adapting a
smaller step size for the numerical integration. To increase the applicability of the combustor
model, the procedure used to calculate the equilibrium composition at given temperature could
be changed. Low O2-concentrations would not pose problems anymore then. In general, more
work needs to be done to validate results, preferably using detailed combustor (flow) data of a
variety of engines and operating conditions.

The chemical model can easily be extended with a limited number of species. For turbo-shaft
emissions calculations the chemical model has been extended with the specie of N-radicals.
However, this only led to minor changes in the emission-indices. However the inclusion of the
combined effect of mixture and chemical reactions led to a substantial improvement in the
calculation of the emission indices.

In order to improve the emission model, some recommendations can be made:
• in general, more testing is needed, preferably using more off-design emission levels, to

verify the results obtained using the combustor model,
• a better flow model is needed to predict the off-design flow division of the cooling air over

the different reactors,

NLR-TR-2014-150

 74

• an integration procedure using small steps should be tested to find out whether this will
improve the accuracy of predictions,

• a better modelling of the effects of the cool boundary layer on especially carbon monoxide
and unburned hydrocarbon emissions is needed,

• possibly, if the carbon monoxide and unburned hydrocarbon emission predictions are still
not satisfying, more extended kinetic schemes could be implemented for calculation of these
emissions,

• the calculation of equilibrium in the combustion chamber should be changed in order to
make low O2-concentrations possible. As an alternative the method of the minimisation of
the Gibbs energy can be implemented (as in NASA CEA) to resolve combustion
equilibrium. Main advantages of the NASA method are the treatment of fuel rich mixtures
and the ease of treatment by an extension of the number of chemical species.

NLR-TR-2014-150

 75

References

1) Appleton, J.P., ‘Soot oxidation kinetics at combustion temperatures’, Atmospheric
Pollution by Aircraft Engines, AGARD-Conference Proceedings-125, paper 20. Neuilly
Sur Seine: AGARD, 1973.

2) Bachmaier, F., Eberius, K.H., Just, Th, ‘The formation of Nitric Oxide and the detection
of HCN’, Combustion Science and Technology, vol.7, p.77. New York: Gordon and
Breach Science Publishers Ltd., 1973.

3) Barrère, M., ‘Modélisation des foyers de turboréacteur en vue de l’étude de la pollution’,
Atmospheric Pollution by Aircraft Engines, AGARD-Conference Proceedings-125, paper
27. Neuilly Sur Seine: AGARD, 1973. (in French)

4) Bokhorst, E.C., The use of alternative gaseous fuels in heavy-duty gas turbines. The effect
on gas turbine operation in general and NOx emissions in particular, EV 1844. Delft:
Delft University of Technology, 1995.

5) Botros, M.J., et al., ‘One-dimensional predictive emission monitoring model for gas
turbine combustors’, ASME Paper 97-GT-414, ASME Technical Papers, New York:
ASME, 1997.

6) Bozza, F., Tuccillo, R., Fontana, G., ‘Performance and Emission Levels in Gas Turbine
Plants’, Journal of Engineering for Gas Turbines and Power, vol.116, p.53-62. New
York: ASME, 1994.

7) Bruin, M., Exhaust gas emission models in the NLR gas turbine simulation program GSP
7.0, memorandum VH-96-009. Amsterdam: National Aerospace Laboratory, 1996.

8) Chleboun, P.V., Hubbert, K.P., Sheppard, C.G.W., ‘Modelling of CO Oxidation in
Dilution Jet Flows’, Combustion and Fuels in Gas Turbine Engines, AGARD-Conference
Proceedings-422, paper 38. Neuilly Sur Seine: AGARD, 1988.

9) Cohen, H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory. London:
Longman Group Limited, 1996.

10) Dryer, F.L., Glassman, I., ‘High-Temperature oxidation of CO and CH4’, Pollutant
Formation and Destruction in flames, 14th Symposium (Int.) on Combustion, p.987-1003.
Pittsburgh: The Combustion Institute, 1973.

11) Fenimore, C.P., ‘Formation of Nitric Oxide from Fuel Nitrogen in Ethylene Flames’,
Combustion and Flame, vol.19, p.289-297. New York: American Elsevier Publishing
Company, Inc, 1972.

12) Fletcher, R.S., Heywood, J.B., ‘A model for nitric oxide emissions from aircraft gas
turbine engines’, AIAA Paper 71-123, AIAA Technical Papers. New York: AIAA, 1971.

NLR-TR-2014-150

 76

13) Girling, S.P., ‘Gas turbine smoke measurement: a smoke generator for the assessment of
current and future techniques’, Combustion and Fuels in Gas Turbine Engines, AGARD-
Conference Proceedings-422, paper 20. Neuilly Sur Seine: AGARD, 1988.

14) Glassman, I., Combustion, Princeton: Academic Press, 1996.
15) Gordon, S., McBride, B.J., Computer Program for Calculation of Complex Chemical

Equilibrium Compositions and Applications. I. Analysis. NASA Reference Publication
1311. Ohio, National Aeronautics and Space Administration, Lewis Research Center,
1994.

16) Hammond, D.C. JR., Mellor, A.M., ‘Analytical Calculations for the Performance and
Pollutant Emissions of Gas Turbine Combustors’, Combustion Science and Technology,
vol.4, p.101-112. New York: Gordon and Breach Science Publishers Ltd., 1971.

17) Hein, K.R.G., Stencils for the course ‘Fuel Conversion’. Delft: Delft University of
Technology, Faculty of Mechanical Engineering and Marine Engineering, 1997.

18) Holderness, F.H., Macfarlane, J.J., ‘Soot Formation in Rich Kerosine Flames at High
Pressure’, Atmospheric Pollution by Aircraft Engines, AGARD Conference Proceedings-
125, paper 18. Neuilly Sur Seine: AGARD, 1973.

19) Hoppesteyn, P.D.J., Andries, J., Hein, K.R.G., ‘Biomass/coal derived gas utilization in a
gas turbine combustor’, ASME Paper 98-GT-160, ASME Technical Papers. New York:
ASME, 1998.

20) ‘ICAO Engine Exhaust Emissions Data Bank’, issue 1, 1993, Appendix C, data for CF6-
80C2B1F, page C-41.

21) Jentink, H.W., Veen, J.J.F. van, ‘In flight spectroscopic aircraft emission measurements’.
To be published in the proceedings of the symposium Gas Turbine Engine Combustion,
Emissions and Alternative fuels. Neuilly Sur Seine: AGARD, 1998.

22) Jong, W. de, Andries, J., Hein, K.R.G., ‘Coal-biomass gasification in a pressurized
fluidized bed gasifier’, ASME Paper 98-GT-159, ASME Technical Papers. New York:
ASME, 1998.

23) Kan, J. van, Numerieke Wiskunde voor technici. Delft: Delftse Universitaire Pers, 1996.
(in Dutch)

24) Keck, J.C., ‘Rate-controlled constrained chemical equilibrium theory of chemical
reactions in complex systems’, Progress in Energy and Combustion Science, vol.16,
p.125-154. Oxford: Pergamon Press plc., 1990.

25) Kelsall, G.J., et al., ‘Combustion of LCV Coal Derived Fuel Gas for High Temperature,
Low Emissions Gas Turbines in the British Coal Topping Cycle’, ASME Paper 91-GT-
384, ASME Technical Papers. New York: ASME, 1991.

26) Kuo, K.K., Principles of Combustion. New York: John Wiley & Sons, 1986.

NLR-TR-2014-150

 77

27) Lavoie, G.A., Heywood, J.B., Keck, J.C., ‘Experimental and Theoretical Study of Nitric
Oxide formation in Internal Combustion Engines’, Combustion Science and Technology,
vol.1, p.313-326. New York: Gordon and Breach Science Publishers Ltd., 1970.

28) Lefebvre, A.W., Gas Turbine Combustion. Washington: Hemisphere Publishing
Corporation, 1983.

29) Locadia, U.E.L., Evaluation with GSP of the effects on the performance of the LM2500-
PE gas turbine using a low calorific alternative fuel and testing of the GSP emission
model. Delft: Delft University of Technology, 1998.

30) McBride, B.J., Gordon, S., Computer Program for Calculation of Complex Chemical
Equilibrium Compositions and Applications. II. Users Manual and Program Description.
NASA Reference Publication 1311. Ohio, National Aeronautics and Space
Administration, Lewis Research Center, 1996.

31) Michaud, M.G., Westmoreland, P.R., Feitelberg, A., ‘Chemical mechanisms of NOx
formation for gas turbine conditions’, Twenty-fourth Symposium (International) on
Combustion, p.879-887, Pittsburgh: The Combustion Institute, 1992.

32) Miller, J.A., Bowman, C.T., ‘Mechanism and modelling of nitrogen chemistry in
combustion’, Progress in Energy and Combustion Science, vol.15, p.287-338. Oxford:
Pergamon Press plc, 1989.

33) Nagle, J., Strickland-Constable, R.F., ‘Oxidation of carbon between 1000°C-2000°C’,
Proceedings 5th Conference on Carbon, p.154, Pergamon, 1961.

34) Nakata, T., et al., ‘Experimental Evaluation of a Low NOx LBG Combustor Using Bypass
Air’, ASME Paper 90-GT-380, ASME Technical Papers. New York: ASME, 1990.

35) Peeters, T.W.J., Roekaerts, D.J.E.M., Turbulent Reagerende Stromingen. Delft: Delft
University of Technology, Faculty of Technical Physics, 1997. (in Dutch)

36) Pratt, D.T., ‘Coalescence/Dispersion Modelling of Gas Turbine Combustors’, Combustor
Modelling, AGARD-Conference Proceedings-275, paper 15. Neuilly Sur Seine: AGARD,
1980.

37) Rizk, N.K., Mongia, H.C., ‘Emissions Predictions of Different Gas Turbine Combustors’,
AIAA Paper 94-118, AIAA Technical Papers. New York: AIAA, 1994.

38) Rodriguez, C.G., O’Brien, W.F., ‘Unsteady, finite-rate model for application in the
design of complete gas-turbine combustor configurations’, Design principles and
methods for aircraft gas turbine engines, AGARD Conference Proceedings. Neuilly Sur
Seine: AGARD, to be published.

39) Ruijgrok, G.J.J., Elements of Airplane Performance. Delft: Delft University Press, 1994.
40) Sato, M., et al., ‘Coal Gaseous Fueled, Low Fuel-NOx Gas Turbine Combustor’, ASME

Paper 90-GT-381, ASME Technical Papers. New York: ASME, 1990.

NLR-TR-2014-150

 78

41) Sturgess, G.J., McKinney, R., Morford, S., ‘Modification of Combustor Stoichiometry
Distribution for Reduced NOx Emission From Aircraft Engines’, ASME Paper 92-GT-
108, ASME Technical Papers, New York: ASME, 1992.

42) Toof, J.L., ‘A Model for the Prediction of Thermal, Prompt, and Fuel NOx Emissions
From Combustion Turbines’, ASME Paper 85-GT-29, ASME Technical Papers. New
York: ASME, 1985.

43) Visser, W.P.J., Gas turbine Simulation Program, NLR CR91022L. Amsterdam: NLR,
1990.

44) Westenberg, A.A., ‘Kinetics of NO and CO in Lean, Premixed Hydrocarbon-Air Flames’,
Combustion Science and Technology, vol.4, p.59-64. New York: Gordon and Breach
Science Publishers Ltd., 1971.

45) Young, J.B., ‘Non-equilibrium wet steam flow in low pressure turbines’ in
Aerothermodynamics of Low Pressure Steam Turbines and Condensers. Washington:
Hemisphere Publishing Corporation, 1987.

NLR-TR-2014-150

 79

Appendix A Graduation assignment

NLR-TR-2014-150

 80

Appendix B Combustion chemical reactions

B.1 Reaction kinetics
In a gas turbine, two features can change the composition of a homogeneous mixture: mixing
with other mixtures, or chemical reactions occurring in the mixture. In a chemical reaction,
some species disappear and new ones are formed. In practice a lot of chemical reactions take
place, even in mixtures with a constant composition. Only in the case of a constant composition,
the destruction of species is as big as the creation. When the destruction of species equals the
creation, and thus the composition remains constant, a so-called state of equilibrium is reached.
If this is the case, the thermodynamic properties of the mixture stay the same.

A lot of processes, like combustion, involve many reactions, with each reaction having its own
speed, the so-called reaction rate. The reaction rate depends on the concentrations of the species
involved, and the specific reaction-rate constant. The specific reaction-rate constant depends on
the temperature and the activation energy, according to Arrhenius’ law:







−=

RT
EATk aexpβ (B.1),

where: k = specific reaction-rate constant (mole1-mcm3m-3s-1),
A = a constant depending on the reaction,

 β = a constant different per reaction (value is between 0 and 1),
 Ea = activation energy (J/mole).

The ‘m’ in the powers of the unity of ‘k’ denotes the order of the reaction, in other words the
sum of the coefficients of the reactants in case of the forward specific reaction rate or the sum of
the coefficients of the products in case of backward specific reaction rate.
For example, the reaction rate of the reaction

DCBA k +→+ (B.2),

is:

dt
dC

dt
dC

dt
dCCCk

dt
dC DCB

BA
A −=−==⋅−= (B.3),

where: Cx = concentration of species x (mole/cm3),
 t = time (s).

NLR-TR-2014-150

 81

Because the arrow in reaction (B.2) only points to the right, (B.2) involves only the reaction
forming C and D from A and B. This reaction is of second order, because the coefficients of A
and B are both one, so the unity of k is (mole-1cm-3s-1). It is obvious from (B.3) that the reaction
rate depends on the specific reaction-rate constant and the concentrations of the species.
Suppose now that reaction (B.2) would be modified in that way that the backward reaction
would also become important (i.e. A and B are also formed from C and D). Then the so-called
‘one-way equilibrium reaction rates’, mentioned in chapter 6, can be calculated. These are equal
to the product of the forward specific reaction rate constant and the equilibrium reactant
concentrations. Because equilibrium concentrations are used, this is also equal to the product of
backward reaction rate constant and equilibrium product concentrations. For the modified
reaction, the one-way equilibrium reaction rate is:

eqDeqCbBeqBeqAfBB CCkCCkR ,,2.,,2.2. ⋅=⋅= (B.4).

A set of reactions leading to the formation of certain products is called a reaction scheme (also
reaction mechanism) or kinetic scheme. If the different reactions in the reaction scheme are
added together, the overall reaction is found. The reaction rates of different reactions in a
scheme can differ very much. If some reactions in the mechanism are a lot slower than the other
reactions in the mechanism, they can limit the speed of the overall reaction.

To describe processes involving chemical reactions, a choice has to be made on what reaction
scheme is to be used. A reaction scheme involving more reactions can give a more adequate
vision of reality, but such a scheme is also more complex than shorter reaction schemes. In case
of computer simulations, a complex reaction scheme can take a lot of computing time and
memory.

If all the reactions in a certain reaction scheme are very fast, a state of equilibrium is reached in
a short time. If this equilibrium involves disappearance of (almost) all the reactants, and
formation of new products, an infinitely fast overall reaction can be acceptable. In a lot of
problems comprising combustion, this approach is assumed accurate enough, as long as there is
enough oxygen.

The question whether reactions are fast enough to assume the equilibrium state to be reached
depends on the speed of competing processes taking place. Apart from the speed of reactions a
characteristic time that the reaction takes can also be used. In a gas turbine the residence time
(e.g. in the combustion chamber) can be compared with the characteristic time of chemical
reactions. If the residence time is long compared to the characteristic time of the reaction the

NLR-TR-2014-150

 82

assumption can be made that the products reach equilibrium. If the characteristic time of the
reaction is (much) longer than the residence time, the composition can be assumed to remain
unchanged, more often called ‘frozen’.

B.2 Dissociation
For chemical reactions to occur it is not necessary that several species are present to react
together. At high temperatures (how high differs per specie), bonds between atoms can
spontaneously dissolve. This process has several different names, like cracking, in the case of
hydrocarbons in a cracking plant, pyrolysis or dissociation.

In a gas turbine, cracking or pyrolysis occurs only locally in hot zones of the combustion
chamber, or elsewhere on a very limited scale, in the case of incomplete combustion, e.g. in
case of a flame out. Dissociation however, becomes more and more important in the hot
sections of the engine, because the maximum temperatures in gas turbines are increasing. In a
gas turbine most of the time hydrocarbons are burned. The overall reaction of the complete
combustion of a hydrocarbon can be described by the following formula:

OHyxCOOyxHC yx 222 24
+→






 ++ (B.5).

Dissociation of CO2 and H2O can be neglected at temperatures lower than 1800 (K), but in case
there are unusually high concentrations of species (like carbon dioxide), dissociation can
become important at lower temperatures.

Because bonds are dissolved, the potential energy of the gases increases when dissociation
appears and the (sensible) heat decreases. Therefore, temperatures found assuming dissociation
are lower than temperatures found when dissociation is neglected. Pressure has effect on
dissociation if the number of moles is increased because of dissociation. In that case, a higher
pressure counteracts dissociation. If dissociation is opposed, less bonds will be dissolved and
less heat converted. The temperature will be higher then.

B.3 Heats of reaction and heats of formation
In general, the heat associated with a chemical reaction is an indefinite quantity, depending on
the path taken. However, if the chemical reaction is carried out at constant pressure or constant
volume, the heat change has a definite value, determined solely by the initial and final states of
the system.

NLR-TR-2014-150

 83

An extension of this is known as Hess’ law (also called the law of constant heat summation).
This law states that the resultant heat change, at constant pressure or at constant volume, in a
given chemical reaction is the same whether it takes place in one or several stages. This means
that the net heat of reaction depends only on the initial and final states. So the heat of reaction
can be calculated by simply adding thermochemical equations; one can choose a suitable
reaction path.

The heat of reaction is defined as follows. If a closed system containing a number of moles at a
given temperature and pressure undergoes an isobaric process to a prescribed composition
having the same temperature as the system before the process, the heat liberated by the system
is the heat of reaction for this process. It can be shown that for a reacting flow, with negligible
change in potential and kinetic energy and no work done other than that required for flow, the
heat of reaction is equal to the change in enthalpy. The first step in proving this is the first law
of thermodynamics:

WQE δδ −=∆ (B.6),

where: ∆E = increase in energy content of the system,
 δQ = heat absorbed by the system,
 δW = work done by the system.

For the increase in energy content of the system one can also write:

KEPEUE ∆+∆+∆=∆ (B.7),
where: ∆U = change in internal energy of the system,
 ∆PE = change in potential energy of the system,
 ∆KE = change in kinetic energy of the system.

If the changes in potential and kinetic energy of the system are negligible, combining equations
(B.6) and (B.7) gives:

WQU δδ −=∆ (B.8).

If the reaction occurs at a constant pressure the following can be written:

∫ ∆+∆== VpUdQQ pp)((B.9).

For a change from state A to state B:

NLR-TR-2014-150

 84

() HHHVVpUUQ ABABABp ∆=−=−+−= (B.10).

Equation (B.10) shows that, under the given assumptions, the heat of reaction is equal to the
change in enthalpy.

The heat of reaction should not be confused with the heat of formation. The standard heat of
formation of a substance is defined as the heat evolved when one mole of a substance is formed
from its elements in their respective standard states (standard temperature and pressure). For a
reaction between species, the heat of reaction can be calculated from the heats of formation of
the species using Hess’ law.

As an example, the heat of reaction of methane reacting with oxygen in stoichiometric content
will be calculated at standard state conditions. The assumption is made that the products formed
are carbon dioxide and water. The overall reaction is:

)(2)()(2)(2224 gOHgCOgOgCH +→+ (B.11).

Because the heat of formation of oxygen is zero at standard state conditions (oxygen is an
element) only the heats of formation of the other three species are needed. The chemical
reactions in which these species are formed from their elements are:

)/(746002)(42 moleJCHHsC −→+ (B.12),
)/(393510)(22 moleJCOOsC −→+ (B.13),
)/(241826½ 222 moleJOHOH −→+ (B.14).

The heat of reaction can be found by first assuming the opposite of reaction (B.12) to take place.
Now, C(s) and 2 H2(g) are formed, and a heat of 74600(J/mole) is consumed. After that,
reactions (B.13) and (B.14) are assumed to take place in the proportion 1:2 respectively. This
time a heat of 393510+2*241826 = 877162 (J/mole) evolves. So the overall heat of reaction is
found to be:

)/(80256274600877162 moleJQp =−= (B.15).

In equation (B.15), moles of reactions are meant. It is also possible to calculate the heat of
formation of a specie exactly in the opposite way from the heat of reaction if the heats of
formation of the other products and reactants are known.

NLR-TR-2014-150

 85

B.4 Calculating equilibrium compositions
In general, two calculation methods can be used to obtain equilibrium compositions at a given
temperature and pressure. The first one is by assuming a number of chemical reactions and
subsequently calculating the concentrations using the equilibrium constants for these reactions.
Because the equilibrium state is reached, all reactions are in equilibrium and it doesn’t matter
which reactions are used (as long as the species assumed to be present in the equilibrium are
participating in the reactions). The equilibrium constant is a relation between concentrations and
the pressure, depending solely on the temperature. The general form of an equilibrium constant
for a reaction:

dDcCbBaA +↔+ (B.16),

is:

() b
B

a
A

d
D

c
C

p pp
ppTK
⋅
⋅

= (B.17).

Using Dalton’s law for partial pressures,

N
n

p
p ii = (B.18),

where: ni = number of moles of specie i,
 pi = partial pressure of specie i,
 N = total number of moles in the complete mixture.

This equation can be changed into an equation comprising numbers of moles and pressure:

()
badc

b
B

a
A

d
D

c
C

p N
p

nn
nnTK

−−+







⋅

⋅
⋅

= (B.19).

This equation is valid when no condensed species are present. For a mixture of species, a
number of equilibrium constants can be used. Using the principle of conservation of atoms,
additional equations are found. Combining these last equations with the equilibrium constants
gives a system of equations, which have to be solved simultaneously to find the equilibrium
composition.

NLR-TR-2014-150

 86

The other way to calculate the equilibrium composition is by optimisation of a thermodynamic
function. This optimisation can be a maximisation, in the case of entropy, or a minimisation, in
the case of a free energy function. What free energy function to use depends on the
thermodynamic data given. An important law in thermodynamics states that with two
thermodynamic properties (pressure, temperature, entropy, etc.) given, the thermodynamic state
of the mixture is fixed and can be calculated. If the thermodynamic state is characterised using
temperature and pressure for example, Gibbs energy is most easily minimised inasmuch as
temperature and pressure are its natural variables.

Because the thermodynamic properties can be calculated for each of the species present, the
effect of changes in composition on the entropy or a free energy function of the mixture can be
calculated. Finding the optimum value of the thermodynamic function gives the equilibrium
composition.

Gordon and McBride (Ref. 15) argue that, if a generalised method of solution is used, both
formulations reduce to the same number of iteration equations. An advantage of free energy
minimisation is that the species can be treated separately without assumption of reaction
equations. It should be reminded, however, that the reactions themselves do not matter, only the
relation between the concentration and pressure does. Glassman (Ref. 14) states that for easy
problems it is most convenient to deal with equilibrium constants. When the problems become
more complex, free energy minimisation becomes more attractive, because using equilibrium
constants results in more bookkeeping, more numerical difficulties with the use of components,
more difficulty in testing for the presence of condensed species and more difficulty in extending
the generalised methods to conditions that require non-ideal equations of state.

Therefore, if the reactions and species are not very numerous and reaction equations can easily
be found, as is the case for dissociation with temperatures not exceeding 3000 (K), the
equilibrium constants are considered a good way to find the equilibrium. If the number of
species or reactions become too big, or if liquid species can become significant, the optimisation
could be a better option.

NLR-TR-2014-150

 87

Appendix C Detailed description of gas models

C.1 GSP 7.0
In GSP 7.0, the ideal gas law is used as the equation of state, relating pressure, density and
temperature.

The specific heat at constant pressure
The specific heat at constant pressure for a mixture is calculated using a seventh degree
polynomial function of T. To find this polynomial the program starts with two polynomials: the
specific heat of air, cpa, and the specific heat of the combustion products in the case of
stoichiometric combustion, cpf, both as a function of temperature. This last polynomial is given
in the program. It could also be calculated by taking the weighted average of the specific heats
of carbon dioxide and water in the ratio in which they are encountered in the stoichiometric
combustion products. This ratio follows from the H/C-ratio of the fuel. Because this polynomial
cpf is given, the gas model only takes one H/C-ratio into account.
From the polynomials of air and stoichiometric combustion products one new polynomial is
built: cps. This cps is used to find the specific heat at constant pressure of a mixture using the
following formula:

FAR
cFARc

c pspa
pg +

⋅+
=

1
 (C.1),

where: FAR = fuel-air-ratio.
Cps can be calculated using the above formula for the case of a stoichiometric combustion. In
that case, cpg is equal to the above mentioned cpf, and FAR is equal to FARstoich, the
stoichiometric fuel-air-ratio. Inserting this into the equation above:

stoich

psstoichpa
pf FAR

cFARc
c

+
⋅+

=
1

 (C.2),

In this equation only cps is unknown. Thus, cps can be found from:

()
stoich

pastoichpf
ps FAR

cFARc
c

−+⋅
=

1
 (C.3).

FARstoich is, like the H/C-ratio, fixed in the program. Because cpf and cpa are also fixed in the
program, cps is also fixed and is only calculated one time in the program (during the

NLR-TR-2014-150

 88

initialisation). To be perfectly clear cps is not the cp of a really existing gas, it’s just used to make
the calculations simpler. The specific heat at constant pressure for a mixture as a function of
temperature and fuel-air-ratio is found by using equation (C.1).

The enthalpy
The enthalpy is calculated in the same way as the specific heat at constant pressure. Here also
seventh degree polynomials are used for the enthalpy of air (ha) and stoichiometric combustion
products (hf), and from these two a polynomial hs is made, according to the following formula,
which has exactly the same form as equation (C.3):

()
stoich

astoichf
s FAR

hFARh
h

−+⋅
=

1
 (C.4).

Like cps, hs is not the enthalpy of a real gas, it’s only calculated as a matter of convenience. The
enthalpy of a mixture as a function of temperature and fuel-air-ratio is calculated using:

FAR
hFARhh sa

g +
⋅+

=
1

 (C.5).

The specific gas constant
The specific gas constant can generally be found by dividing the universal gas constant, R, by
the molar mass of the mixture, M. In GSP 7.0, the specific gas constant is calculated by taking
the weighted average between Ra, the value of the specific gas constant for air, which has a
value of 287.057, and Rs, which has a value of 287.056. The specific gas constant is calculated
according to the formula:

()[]

FAR

RRFAR
FAR

FARR
R

asstoich
stoich

a

g +

−⋅+⋅+
=

1

1
 (C.6).

A strange thing about this formula is that is has exactly the same form as formula (C.1) with
formula (C.3) inserted in it. For that reason it would be more logical if Rs would be Rf. At an
H/C-ratio of about 1.95, the specific gas constant of the combustion gases is about the same as
the specific gas constant of air.
The formula can be further investigated by inserting the values GSP uses for the constants in the
formula. One finds:

NLR-TR-2014-150

 89

FAR
FARRg +
⋅+

=
1

0559.287057.287
 (C.7).

From this formula it can clearly be seen that GSP always finds a value of approximately
287.057 (± 7.1 e-5), as was to be expected.

The entropy
Unlike the enthalpy the entropy is not only a function of temperature, but also of pressure. The
first step GSP 7.0 makes when calculating the entropy is creating a function Φ (phi). Φ is only a
function of temperature and fuel-air-ratio. It is calculated in about the same way as enthalpy and
specific heat at constant pressure: again two seventh degree polynomial functions of
temperature, Φa and Φf are given in GSP 7.0. Using a formula exactly like (C.3) and (C.4) the
function Φs is made.
A difference with the calculation of the enthalpy and the specific heat at constant pressure is that
this time, one term is added to the polynomials of Φa and Φs, namely the specific heat at
constant pressure multiplied by the natural logarithm of temperature. The specific heat at
constant pressure is given as a constant here: cpa = 1021.10 (J/kg/K). Using formula (C.3) and
the following constant value for cpf: cpf = 1032.57 (J/kg/K), the value for cps becomes 1033.361
(J/kg/K). Now that the polynomials of Φs and Φa, including the logarithmic term, are known, the
polynomial for Φg, the function Φ for a mixture, can be calculated using:

FAR
FAR sa

g +
Φ⋅+Φ

=Φ
1

 (C.8).

If Φg is known for the mixture, it is only a small step to calculating the entropy. GSP 7.0 uses
the following formula:

std
ggg p

pRS ln⋅−Φ= (C.9),

where: p = pressure (Pa),
 pstd = standard pressure (here 101325 (Pa)).

The ratio of specific heats
To calculate the ratio of specific heats (the specific heat at constant pressure divided by the
specific heat at constant volume) the specific heat at constant volume, cv, must be known. For
ideal gases cv can be calculated as the difference between cp and the specific gas constant Rg.
Thus, in GSP 7.0 γ is calculated as follows:

NLR-TR-2014-150

 90

gp

p

Rc
c
−

=γ (C.10).

The speed of sound
To calculate the speed of sound, a, GSP 7.0 uses the formula:

TRa gγ= (C.11).

If the temperature and fuel-air-ratio are known, γ and Rg can be calculated, and thereby the
speed of sound.

The dynamic viscosity
The dynamic viscosity is not calculated in the GSP 7.0 gas model.

C.2 GasTurb 7.0
Like in GSP 7.0, the ideal gas law is used as the equation of state.

The specific heat at constant pressure
The specific heat at constant pressure, cp, is calculated from a polynomial, dependent on the
temperature. This polynomial is found from two other polynomials by using the fuel-air-ratio.
The only difference with the calculation of the cpg polynomial in GSP, is that here the equivalent
of cps is given, and not calculated in the program. In GSP 7.0 this also could have been done,
since cps was calculated from cpf, cpa and FARstoich, where FARstoich and the coefficients of cpa and
cpf are all constants. The equivalent of cps is called cpf. The specific heat at constant pressure is
called cpl (air is ‘Luft’ in German). The cpg-polynomial is calculated from the following
equation, the GasTurb 7.0 equivalent of equation (C.1):

FAR
cFARc

c pfpl
pg +

⋅+
=

1
 (C.12).

The enthalpy
The enthalpy is calculated in the same way as the cp: there are two polynomials, hl for air and hf
for a virtual gas, and the enthalpy polynomial of the mixture, hg, follows from these two
polynomials and the fuel-air-ratio:

FAR
hFARh

h fl
g +

⋅+
=

1
 (C.13).

NLR-TR-2014-150

 91

A remark that can be made here is that for temperatures below 180 (K) the enthalpy is
calculated with the formula:

1801
)180()180(

)(T
FAR

hFARh
Th fl

g ⋅
+

⋅+
= (C.14).

Studying the formula, one can see that hg(T) is made a linear function between T=0 (K), where
hg = 0 (J/kg) and T=180 (K), where hg is equal to the value calculated with equation (C.13).

The specific gas constant
For the specific gas constant, GasTurb 7.0 uses a constant value: Rg = 287.05 (J/kg/K).
According to GasTurb’s user manual, a fixed H/C-ratio of 1.9405 is assumed. In that case, the
specific gas constant of the reaction products is the same as for air.

The entropy
The absolute value of the entropy is nowhere calculated in GasTurb 7.0. Entropy is only needed
to calculate isentropic changes. For that purpose, a function Φ(T) is defined, using the same
coefficients as the polynomials for specific heat at constant pressure and the enthalpy: the only
difference is a constant integration factor. The definition of Φ is:

dT
T
Tc

R
T

T
p

g
∫⋅=Φ
0

)(1)((C.15).

By using this formula for Φ(T) the following equation can be found for an isentropic change of
state:

)()(ln 12
1

2 TT
p
p

Φ−Φ=







 (C.16).

Studying this function Φ(T) points out that it is the same one as used in GSP 7.0, except for the
factor Rg, the specific gas constant. If equation (C.9) is used for 2 states with the same value for
the entropy, one finds:









=

















−








=Φ−Φ

1

212
12 lnlnln)()(

p
pR

p
p

p
pRTT g

stdstd
g (C.17).

NLR-TR-2014-150

 92

It is obvious that except for the factor Rg, equations (C.16) and (C.17) are the same. The Φ(T)-
polynomial is calculated from the polynomials Φl(T), the polynomial for air, and Φf(T), the
polynomial for a virtual mixture. Like for the enthalpy, GasTurb 7.0 contains an approximation
for Φ(T) for temperatures below 180 (K): the program calculates the values of Φ for 180 (K)
and 185 (K), and draws a straight line through those points. The values for temperatures below
180 (K) are found by extrapolating this line. For temperatures above 2300 (K) the same method
of extrapolation is used, using values for Φ at 2300 (K) and 2305 (K).

The ratio of specific heats
The ratio of the specific heats (γ) is calculated in exactly the same way as in GSP 7.0:

gp

p

Rc
c
−

=γ (C.18).

The speed of sound
The speed of sound is not calculated in a separate procedure, but calculated where needed using
the formula:

() sgs TRTa ⋅= γ (C.19).

The subscript s in Ts indicates that static temperatures are used here.

The dynamic viscosity
Finally, the dynamic viscosity is calculated using two fourth degree polynomials, functions of
the temperature. The first polynomial is the dynamic viscosity as a function of temperature for
air only (µ1 in the equation below), and the second is the dynamic viscosity for a mixture of air
with combustion products that exist when the fuel-air-ratio is 0.04 (µ2 in the equation below).
The dynamic viscosity of the mixtures at other fuel-air-ratios is found by assuming a linear
dependence of the dynamic viscosity on fuel-air-ratio:

))()((
04.0

)(121 TTFART µµµµ −+= (C.20).

C.3 GasTurb 8.0
As was said in the introduction, GasTurb 8.0 offers users the possibility to choose one of several
different fuels. The heating value of the fuel is fixed, except for standard fuel, which also has a

NLR-TR-2014-150

 93

default value for the fuel heating value. Standard fuel is the jet fuel that was also used in version
7.0.

The calculation of thermodynamic properties of the mixture when standard fuel is used is the
same as in version 7.0. When a different fuel is specified, the values of thermodynamic
properties are found by interpolation in tables. This interpolation is linear, except for the
function Φ. Here logarithmic interpolation is used. Because most thermodynamic properties are
a function of fuel-air-ratio and temperature, most of the tables are two-dimensional. This is the
case for specific heat at constant pressure, ratio of specific heats, enthalpy and the function Φ
(used when calculating isentropic changes). The molar mass is found in a one-dimensional table
because it only depends on the composition (here fuel-air-ratio). As long as dissociation is
neglected, the temperature has no significant effect on composition, which means that fuel-air-
ratio is enough to predict the molar mass of a mixture. The specific gas constant is calculated by
dividing the universal gas constant by the molar mass:

M
RRg = (C.21),

where: M = Molar mass (g/mole).

C.4 NASA CEA-Program

C.4.1 Calculation of thermodynamic and thermal transport properties
In CEA, the perfect gas law is assumed to be valid even when small amounts of condensed
species (up to several percent by weight) are present. Because condensed species are assumed to
occupy a negligible volume relative to the gaseous species, volumes used in CEA refer to gases
only, while mass includes condensed species.

The CEA-program contains a lot of data in polynomial form for solid, liquid and gaseous
species, relevant to application in the in chapter three mentioned type of problems (e.g. rocket
performance). The ranges of the polynomials are from 200 (K) to 1000 (K), from 1000 (K) to
6000 (K) and from 6000 (K) to 20000 (K), as long as the specie considered can still be present
in relevant (equilibrium) quantities at that temperature. The polynomials for thermodynamic
properties are given per specie in the form of ten least-squares coefficients (a1 up to and
including a8, b1 and b2). For some (less important) species less coefficients are used to describe
the polynomial. For thermal transport properties, four least-squares coefficients are used. The
notations used here can differ from NASA’s notations.

NLR-TR-2014-150

 94

The specific heat at constant pressure
The specific heat at constant pressure per specie is calculated by means of a polynomial. To
make the polynomial dimensionless, it is given in the form of (cp/R):

4
7

3
6

2
543

1
2

2
1

)(
TaTaTaTaaTaTa

R
Tcp ++++++= −− (C.22).

The cp found using this equation is in (J/mole/K). To get cp in (J/kg/K), one can use the molar
weight of the specie. The cp of a mixture is calculated by taking the weighted average between
the values of cp of the species present in the mixture. In case of a cp in (J/kg/K) the mass fraction
is to be used and in case of cp in (J/mole/K) the mole fraction:

()∑
=

⋅=
NS

i
ipipg cmc

1
, (C.23),

where: cpg = specific heat at constant pressure of the (gaseous) medium (J/kg/K),
 NS = number of species in mixture (-),
 mi = mass fraction of specie i (-),
 cp,i = specific heat at constant pressure of specie i (J/kg/K).

The cp calculated using equation (C.23) is the cp of a mixture, assuming that the composition
remains constant (‘frozen’ composition, see appendix on chemical reactions). When the
assumption is made that reactions can occur during changes of temperature, another cp should
be found. For example, if condensed species are present an increase in temperature can cause
evaporation. Because of evaporation, more heat will be needed to increase the temperature of
the mixture, and consequently, a larger cp is found, than is the case when not taking evaporation
into account. Therefore, NASA discerns the cp,e, with the assumption of equilibrium, and the cp,f,
using the assumption of frozen compositions. The difference between these two is called cp,r, the
cp change due to reactions. The cp,r is calculated iteratively together with the iterations used to
find the equilibrium composition, see paragraph C.4.2, using the following formula:

∑∑
+==









∂
∂

+







∂
∂

=
NS

NGj p

jj
NG

j p

jj
jrp T

n
T
h

T
n

T
h

nc
11

, lnln
ln

 (C.24),

where: nj = number of moles of specie j per gram of mixture,
 hj = enthalpy of specie j,
 NS = number of species,

NLR-TR-2014-150

 95

 NG = number of gases.
Remark: in the NASA-program, gases are indexed from 1 to NG and condensed species are
indexed from NG+1 to NS.

The enthalpy
The enthalpy is also calculated per specie with a polynomial, partly using the same coefficients
as used for the specific heat at constant pressure. The enthalpy is also divided by the (specific)
gas constant. The polynomial is:

1

5

7

4

6

3

5

2

432
1

1 5432
ln)(bTaTaTaTaTaTaTa

R
Th

+++++++−= − (C.25).

The value of b1 can be chosen arbitrarily, but the slope of h(T) is determined by the specific heat
at constant pressure. In the NASA-program the value of b1 is determined by the condition, that
the value of the enthalpy at a temperature of 298.15 (K) is equal to the heat of formation of that
specie at 298.15 (K). Again, the enthalpy for the mixture is found using:

()∑
=

⋅=
NS

i
iig hmh

1
 (C.26),

where: hg = enthalpy of the medium (J/kg),
 NS = number of species in mixture (-),
 mi = mass fraction of specie i (-),
 hi = enthalpy of specie i (J/kg).

The specific gas constant
The specific gas constant is not used explicitly in the NASA-program, only the universal gas
constant is used as well as the molar mass. NASA uses the following expression for the ideal
gas law:

nRTp
=

ρ
 (C.27),

where: n = total number of moles of gaseous species per gram mixture.

It is obvious that ‘nR’ in the equation is the same as the specific gas constant. The value for ‘n’
is found using:

NLR-TR-2014-150

 96

∑
=

=
NG

j
jnn

1

 (C.28),

where: nj = number of moles of specie j per gram mixture.

For the molar mass, two definitions are used, the first one is:

nn

Mjn
M NG

j
j

NS

j
j 1

1

1 ==

∑

∑

=

= (C.29).

The other definition of molar mass is:

∑

∑

=

== NS

j
j

NS

j
jj

n

Mn
MW

1

1 (C.30).

The relationship between these two definitions is:









−= ∑

+=

NS

NGj
jxMMW

1

1 (C.31),

where: xj = mole fraction of condensed specie j relative to all species.

Obviously, the specific gas constant is only equal to the universal gas constant divided by the
molar mass if no condensed species are present. In that case, both definitions of the molar mass
yield the same result.

The entropy
The entropy is partly calculated using a polynomial. The entropy per specie follows from:

pR
n
n

RSS j
jj lnln0 −−= (j=1,…,NG) (C.32),

0
jj SS = (j=NG+1,…,NS) (C.33),

where: Sj

0 = standard state molar entropy for species j.

NLR-TR-2014-150

 97

Equation (C.32) is only valid for gases, and equation (C.33) for condensed species. The
standard state molar entropy for species j follows from a polynomial, partly using the same
coefficients as the polynomials for specific heat at constant pressure and the enthalpy:

2

4

7

3

6

2

543
1

2

2

1

0

432
ln

2
)(

bTaTaTaTaTaTaTa
R
TS j ++++++−−= −

−

 (C.34).

The total number of moles of gaseous species per gram mixture (n) in equation (C.32) follows
from equation (C.28).

The ratio of specific heats
In the NASA-program an explicit difference is made between the ratio of specific heats, γ, and
another thermodynamic property, γs, used to calculate the speed of sound. The definition of both
is:

S
s

p








∂
∂

≡
ρ

γ
ln
ln

 (C.35),

v

p

c
c

≡γ (C.36).

The relationship between both is:

T

S

p
V








∂
∂

−=

ln
ln
γγ (C.37).

It can be shown that for an ideal gas:

1
ln
ln

−=







∂
∂

Tp
V

 (C.38).

So if the gas behaves like an ideal gas, γs and γ are the same.

The speed of sound
The speed of sound is found from the following equation:

NLR-TR-2014-150

 98

snRTa γ= (C.39).

In this equation, n is calculated using equation (C.28).

The dynamic viscosity
CEA can calculate several thermal transport properties. These are the dynamic viscosity, the
thermal conductivity and the Prandtl number. Because only the dynamic viscosity is used in the
new gas model, this is the only thermal transport property whose calculation is described here.
The dynamic viscosity is only calculated for gaseous species, because there is no feasible
method for calculating thermal transport properties for a multiphase mixture.
The dynamic viscosity per specie is calculated as a function of temperature using a polynomial,
with least-squares coefficients (A, B, C and D):

D
T
C

T
BTA +++= 2)ln()ln(µ (C.40).

The unity of dynamic viscosity used by CEA is the micropoise (µP). The dynamic viscosity of a
mixture cannot be calculated by simply taking the weighted average of the dynamic viscosity of
the species, because interactions between the species also influence the dynamic viscosity. To
find the dynamic viscosity for a mixture, the following formula is used:

∑
∑=

=

+
=

NG

i
NG

j
ijji

ii
mix

xx

x
1

1

φ

µµ (C.41),

where: NG = number of gaseous species in the mixture (-),
 xi = mole fraction of specie i relative to all gaseous species (-),
 µi = dynamic viscosity for specie (µP),
 φij = viscosity interaction coefficient between species i and j (-).

In general, φij ≠ φji. The interaction coefficient can be calculated by two equations:

ji

j

ij

i
ij MM

M
+

=
2

µ
µφ (C.42),

where: µij = viscosity interaction parameter (µP),
 Mi = molar mass of specie i (g/mole), and

NLR-TR-2014-150

 99

ji

j

i

j

j

i
ij MM

M
M
M

+



















+=

2
1

4
1

2
4

1

µ
µφ (C.43).

Equation (C.42) can be used only if the viscosity interaction parameter between species is
known. If this is not the case, equation (C.43) is used.

C.4.2 Calculation of equilibrium compositions
The CEA-program can calculate equilibrium compositions if one of six combinations of two
thermodynamic state functions is specified. The program finds the equilibrium composition by
optimisation of a thermodynamic function, as described in appendix B. For combustion at
constant pressure, which is approximately the case in gas turbines, the two thermodynamic state
functions are enthalpy and pressure. In this case, Gibbs energy is minimised by CEA. The
enthalpy follows from the reactant temperature and composition, by using the heats of
formation.

For more detailed information on the optimisation procedure one should read Gordon (Ref. 15).

C.5 A constant specific heat gas model
An example of such a gas model is the following. Two different gas streams are discerned: air
and air with combustion products. The following properties of the gases are used:

Table C.1 Example of a constant specific heat gas model

Properties: Air Comb.
Prod.

Specific gas constant, Rg (J/kg/K) 287 287

Specific heat at constant pressure, cp (J/kg/K) 1000 1150

Ratio of specific heats, γ (-) 1.4 1.33

The enthalpy is found by multiplying the constant specific heat at constant pressure with
temperature and adding a(n) (arbitrary) constant. Entropy is not explicitly calculated in this
model, but for an isentropic change of state, the Poisson equation can be used to relate changes
in temperature and pressure:

NLR-TR-2014-150

 100

γ
γ 1

1

2

1

2

−









=

p
p

T
T

 (C.44).

The speed of sound is calculated using:

TRa gγ= (C.11).

where: a = speed of sound (m/s),

 Rg = specific gas constant (J/kg/K).

For the equation of state, the ideal gas law is used. In such an easy gas model, usually no
thermal transport properties are calculated, because they are less important for gas turbine
performance prediction than the thermodynamic properties.

NLR-TR-2014-150

 101

Appendix D Detailed description of combustor models

D.1 GSP 7.0
The combustion chamber is modelled as a black box in GSP 7.0. The only combustion process
that can be described by GSP 7.0 is complete (infinitely fast) combustion of a fuel. Only one
fuel property can change: the fuel heating value. In the program, a scale factor is calculated by
dividing the user specified fuel heating value by the standard fuel heating value. This scale
factor is used within the program.
However, within the program the fuel heating value is not a number, but a decreasing
polynomial function of the (burner exit) temperature. To understand why this function is
decreasing, one should take a look at figure J.3, and equation (J.1), repeated here for
convenience:

When the products of the (complete) combustion reaction are assumed to be carbon dioxide and
water, the heating value is equal to the heat of reaction. From equation (J.1) it is obvious that the
difference between the heating values at two temperatures is formed by the difference in
enthalpy changes between heating the reactants or products. The heating value is decreasing
because enthalpy needed for the heating of the combustion products is lower than the enthalpy
needed to heat the fuels.
However, the polynomial is not exactly equal to the heating value. This can be seen by studying
the following equation, taken from GSP 7.0:

)()()(inairinoutairincomboutf THWTHWTFHVW ⋅−⋅=⋅⋅ η (D.1),

where: Wf = fuel flow (kg/s),
 FHV = fuel heating value (J/kg),
 ηcomb = combustion efficiency (-),
 Win = oxidant mass flow entering the combustion chamber (kg/s),
 Hair = enthalpy of the air only (J/kg).
This equation can be seen as a sort of definition of the fuel heating value. The left-hand term of
equation (D.1) is (a sort of) heat release due to combustion, and the right-hand term is a sort of
warming of the oxidant. The meaning of the second term on the right-hand side is quite clear:
this is the total quantity of enthalpy (not per unit of mass) of the air entering the combustor. The
first term, however, consists of the enthalpy per unit of mass of the air leaving the combustion
chamber multiplied by the oxidant mass flow entering the combustion chamber. The true

)()(2products1reactants THHTHH rr ∆+∆=∆+

NLR-TR-2014-150

 102

amount of oxidant leaving the combustion chamber is of course less than Win because some
oxidant is taken away by the combustion process.
The choice to alter the ‘fuel heating value polynomial’ is obviously made to facilitate
calculations. However, the price paid for this calculation ease is that the program code becomes
less clear.

D.2 GasTurb 7.0
The combustor model is a black box. Like in GSP 7.0, GasTurb 6.0 used a polynomial for the
(user-specified) fuel heating value. In GasTurb 7.0 (and 8.0) however, this polynomial isn’t
used anymore, because GasTurb 7.0 (and 8.0) takes dissociation into account. To find the
burner exit temperature, a special procedure is used. This procedure uses a spline-interpolation
in tables.

For a reference pressure the temperature rise over the combustion chamber is calculated as a
function of the burner inlet temperature and fuel-air-ratio. If the pressure in the combustion
chamber is not the same as the reference pressure, a correction factor is used, which is again a
function of burner inlet temperature and fuel-air-ratio. The tabulated temperatures were found
with a special computer program calculating equilibrium compositions and temperatures (such
as the NASA-program).

Although GasTurb calculates burner exit temperatures accounting for dissociation effects, the
program has its shortcomings concerning dissociation, because no dissociation corrections are
performed in other components. As stated in the appendix on chemical reactions, dissociation
takes away heat, and converts it into chemical energy. Because the heat decreases, the
temperature found while accounting for dissociation will be lower than the temperature found
when dissociation is neglected. When the temperature decreases in a process after the
combustion has taken place, e.g. in an expansion process, there will be recombination of the
previously dissociated species. In this process, chemical energy is converted back into heat,
which will cause an increase in temperature. For this reason, it is not correct, to account for the
effects of dissociation only in the combustion chamber. If dissociation occurs in the combustion
chamber, some enthalpy is taken away by dissociation. Later on, in the turbine, recombination
will give back enthalpy, but this effect is not accounted for in the program, so that enthalpy is
lost.

D.3 GasTurb 8.0
In GasTurb 8.0 the burner exit temperature is basically calculated in the same way as in
GasTurb 7.0, but now tables are added for the new fuels.

NLR-TR-2014-150

 103

Appendix E Formation of emissions

E.1 Formation of UHC, CO and Smoke
Generally speaking, UHC (unburned hydrocarbons), CO and smoke are caused by incomplete
burning of the fuel. This is probably caused by shortage of oxidant (normally oxygen (O2)) or
by low temperatures in certain regions of the combustion chamber. To avoid this problem the
mixing process should be improved.

Unburned hydrocarbons are usually caused by a poor atomisation or a sudden drop of
temperature, e.g. when the fuel reaches the film of cooling air, that is used to protect the
material of the combustion chamber from the high temperatures. Lower amounts of unburned
hydrocarbons can be achieved by proper injection and atomisation of the fuel, and temperatures
in the burning zone high enough to sustain burning.

Carbon monoxide is formed by partial oxidation of hydrocarbons, and is therefore encountered
in every combustion process involving carbon. Normally CO reacts with oxygen to form carbon
dioxide (CO2). CO can remain present in fuel-rich zones, because of a lack of oxygen, but also
in fuel-lean zones because of dissociation of CO2. If the temperature or the radical
concentrations (especially the OH concentration) become too low, the CO oxidation reactions,
forming CO2, can be quenched. This quenching is likely to occur near the combustion chamber
liner, because of the low temperature here. CO-emissions can be lowered by avoiding too rich
and too lean combustion zones and providing a good burn-out with enough oxygen.
Smoke consists of carbon-rich particles. If a liquid fuel is used these particles can be formed
when the residence time in the primary zone of the combustion chamber is too short for the fuel
droplets to evaporate and burn completely. The amount of smoke can be reduced by avoiding
(locally) too fuel-rich zones and by using a good atomiser to provide a good mixing process.

E.2 Formation of Nitrogen oxides
The formation mechanisms described here are mainly taken from (Glassman, Ref. 14), (Miller,
Ref. 32) and (Michaud, Ref. 31).

NOx is usually defined as the sum of NO and NO2, although sometimes also other nitrogen
oxides like N2O are included.
In combustion processes, NO is far more important than NO2. NO2 is only encountered in the
low-temperature regions of the combustion chamber. In the low-temperature regions of flames,
the concentrations of HO2 can be high enough to cause NO2 formation from NO:

NLR-TR-2014-150

 104

OHNOHONO +↔+ 22 (E.1).

However, this NO2 is rapidly removed by the following reactions:

OHNOHNO +↔+2 (E.2),

22 ONOONO +↔+ (E.3).

Significant amounts of NO2 can remain if the above reactions (E.2) and (E.3) quench because of
decreasing radical concentrations due to mixing with cold fluid elements. More NO2 is formed
in the atmosphere (and possibly in the dilution zone) at even lower temperatures, because of the
reaction:

22 22 NOONO ↔+ (E.4).

The amounts of N2O emitted into the atmosphere are negligible in high-temperature combustion
processes, like the ones occurring in gas turbines. According to Kelsall (Ref. 25) this is even the
case if low-calorific-value fuels are burned, with a (relatively) low adiabatic flame temperature.
However, N2O can be an intermediary product in the formation of NO, and thus contribute to
NOx formation.

Nitrogen oxides can be formed by four mechanisms:
• Thermal NOx,
• Prompt NOx,
• Fuel NOx,
• Nitrous oxides.

Thermal NOx
Thermal NOx can be described by the reaction mechanism proposed by Zeldovich:

NNOON +↔+2 (E.5),
ONOON +↔+ 2 (E.6).

Usually, this two-reaction mechanism is supplemented with a third reaction equation:

HNOOHN +↔+ (E.7).

NLR-TR-2014-150

 105

In table E.1 values for the constants in the equation for the specific reaction-rate constant are
shown. This equation is shown in appendix B and repeated here for convenience:







−=

RT
EATk aexpβ (E.8),

where: A, β = constants differing for each equation (-),
 T = temperature (K),
 Ea = activation energy (J),
 R = universal gas constant (8314.51 (J/mole/K)).

The reactions are repeated in table E.1, and the same numbers are used as written above. The
only difference here is that the forward reaction and backward reaction are treated separately. In
the reaction numbers, the ‘f’ stands for forward, and the ‘b’ stands for backward.

The value of the quotient (Ea/R) is denoted in the table as TA.

Table E.1 Reaction constants for thermal NOx-formation (Peeters, Ref. 35)

Reaction A β TA k1000 k1500 k2000 k2500

E.5f N2 + O → NO + N 1.80 1011 0 38367 3.91 10-6 1.40 100 8.39 102 3.89 104

E.5b NO + N → N2 + O 4.01 1010 0 508 2.41 1010 2.86 1010 3.11 1010 3.27 1010

E.6f N + O2 → NO + O 6.40 106 1 3139 2.77 108 1.18 109 2.66 109 4.56 109

E.6b NO + O → N + O2 1.37 106 1 19239 6.04 100 5.53 103 1.82 105 1.56 106

E.7f N + OH → NO + H 3.00 1010 0 0 3.00 1010 3.00 1010 3.00 1010 3.00 1010

E.7b NO + H → N + OH 8.12 1010 0 24125 2.71 100 8.41 103 4.69 105 5.23 106

Studying the table, it can clearly be seen that reactions E.5f, E.6b and E.7b depend strongly on
temperature. The limiting step in the mechanism is E.5f, because of its high activation-energy.
From the fact that E.5f is the limiting step for thermal NOx-formation, the conclusion can be
drawn that a high content of oxygen radicals promotes the formation of thermal NOx, because it
will increase the reaction rate for equation E.5f (see appendix B for the calculation of reaction
rates).

In practice, the first two reactions from the Zeldovich mechanism ((E.5) and (E.6)) are far more
important than the third one. However, the third reaction gets more significant in fuel-rich
conditions.

NLR-TR-2014-150

 106

Prompt NOx
If one measures the build up of NOx in a flame as a function of the time and extrapolates the
amount of NOx to time zero, a positive intercept on the NOx-axis can be seen. This is called
prompt NOx. The time available in the flame front is too short for the Zeldovich mechanism to
form this NOx, assuming the equilibrium concentration of O radicals. According to Glassman
(Ref. 14), three mechanisms can be responsible for formation of prompt-NOx.

Figure E.1 Concentrations calculated for methane-air reaction
(Glassman, Ref. 14)

The first mechanism is the Zeldovich mechanism, which is accelerated because of O and OH
radical concentrations higher than equilibrium values. These O and OH concentrations are
shown in figure E.1 for a stoichiometric methane-air reaction (at a pressure of 2 atmospheres
and a temperature of 2477 (K)).

The second mechanism involves hydrocarbon fragments and atmospheric nitrogen. These two
cause nitrogen-containing radicals, that are subsequently oxidised to NOx. Examples of this sort
of reactions are the following:

CNCNNC +→+ 22 (E.9),
CNHCNNHC +→+ 22 (E.10),

NHCNNCH +→+ 2 (E.11),
NHHCNNCH +→+ 22 (E.12).

The third mechanism assumes the reaction of O-atoms with N2 forming N2O, which
subsequently reacts to NO with another O-atom:

NLR-TR-2014-150

 107

MONMNO +→++ 22 (E.13),
NONOOON +→+2 (E.14).

The first mechanism, involving O and OH concentrations above the equilibrium value, can be
important in non-premixed flames, in stirred reactors for lean conditions and in low-pressure
premixed flames. However, Miller argues that super-equilibrium O-atom concentrations are not
very important as a source of prompt NOx in flames, because the temperatures at which they
occur are too low for the Zeldovich mechanism. The second mechanism, involving hydrocarbon
fragments, is dominant in fuel-rich premixed hydrocarbon combustion and in hydrocarbon
diffusion flames. The third mechanism, involving N2O, becomes more important as the fuel-air-
ratio decreases, the burned-gas temperature decreases, and as the pressure increases. However, it
is most important under conditions where the total NO formation is relatively low.

Fuel NOx
When the fuel used contains elemental nitrogen, a part of this nitrogen is converted to NOx in
the flame. According to Toof (Ref. 42), hydrogen cyanide is a necessary intermediate in the
conversion of fuel bound nitrogen to NOx. He describes the gross characteristics of the reaction
mechanism for the formation of fuel NOx as follows. In the first step hydrogen cyanide (HCN)
is formed by pyrolysis of nitrogen-containing fuel. In the second step, amines (NHi) are formed
and in the third step a certain quantity of amines is oxidised to NO. Once NO is formed, the
amines can react with NO as well as oxygen:

...+→+ NOOxNHi (E.15),

...2 +→+ NNONHi (E.16).

In equation (E.15) ‘Ox’ is a specie containing oxygen. The amount of nitrogen in the fuel that is
converted to NOx depends on the reaction rates of (E.15) and (E.16).

However, Miller (Ref. 32) claims that both hydrogen cyanide and ammonia (NH3) can be
intermediates in fuel NOx formation. First the parent fuel nitrogen is converted rapidly to
hydrogen cyanide and ammonia. Hydrogen cyanide is the most important product if the fuel
nitrogen is bound in an aromatic ring whereas ammonia is the most important product if the fuel
contains nitrogen in the form of amines. Both hydrogen cyanide and ammonia are subsequently
oxidised to NO or N2, where amines form an important intermediate in the oxidation of
hydrogen cyanide.

Assuming that Toof, who used older data than Miller, only used studies where fuel contained
nitrogen was not present in the form of amines, the difference is not very big.

NLR-TR-2014-150

 108

The reaction rate of the conversion of fuel bound nitrogen to fuel NOx is usually high. An
explanation for this is that the reaction mechanism uses a number of (rapid) steps that are also
used by the (second) reaction mechanism forming prompt NOx using hydrocarbon fragments.

The fraction of fuel bound nitrogen that is converted to NO, the so-called conversion rate,
depends strongly on the local combustion environment (e.g. temperature and equivalence ratio),
and on the initial level of nitrogen compound in the fuel-air mixture, but hardly on the molecule
containing the nitrogen (e.g. pyridine, ammonia). In general, increasing the amount of fuel-
bound nitrogen will result in a decrease of the conversion fraction.

Nitrous oxides
Nitrous oxide can be an important intermediate in NO formation and removal. In the literature, a
number of possible steps involving N2O have been mentioned, of which the most important are
(M is a third specie):

MONMON ++↔+ 22 (E.17),

222 ONOON +↔+ (E.18),
NONOOON +↔+2 (E.19),
OHNHON +↔+ 22 (E.20),
NHNOHON +↔+2 (E.21),
NCONOCOON +↔+2 (E.22),

222 HONOHON +↔+ (E.23).

Which reactions are important and whether the reactions form or remove N2O depends on the
combustion process. As an example, Miller (Ref. 32) claims that the most important reactions in
a well-stirred reactor for methane-air combustion are the following. For lean and moderately
rich fuel-air mixtures (equivalence ratio smaller than 1.2), the backward reaction of (E.17) is the
principal N2O formation reaction. The backward reaction of (E.22) starts forming N2O around
stoichiometric and for equivalence ratios higher than 1.2, the backward reactions of (E.22) and
(E.21) become the most important N2O formation steps. For all equivalence ratios encountered
in the investigation (between 0.70 and 1.60), (E.20) is the prime N2O removal reaction. For
equivalence ratios lower than 1.2, reactions (E.21) and to a lesser extend (E.19) remove N2O,
while forming NO.
In general (like in the case of prompt NOx formation by N2O reactions), NOx formation
involving N2O becomes more important as the fuel-air-ratio decreases, the burned-gas
temperature decreases, and as the pressure increases. It is most important under conditions
where the total NO formation is relatively low.

NLR-TR-2014-150

 109

The relative contributions of the NOx mechanisms depend on the combustion conditions,
primarily the temperature and the equivalence ratio, and the fuel applied.

Figure E.2 Relative contributions of thermal, nitrous oxide and prompt NOx
to total NOx (Michaud, Ref. 31)

At higher temperatures and equivalence ratios between 0.8 and 1, where most NOx is formed,
thermal NOx is the most important source of NOx-production. If the equivalence ratio gets lower
than 0.8, the nitrous oxides pathway to NOx becomes more important. In figure E.2 (Michaud,
Ref. 31), the contributions of three mechanisms to total NOx for a premixed methane-air flame
are shown as a function of equivalence ratio for fuel-lean conditions. The solid line denotes
nitrous oxide contribution, the dashed climbing line thermal NOx contribution and the lower
dashed line the prompt NOx contribution. The contribution of prompt NOx to total NOx is
relatively small under fuel-lean conditions (equivalence ratios smaller than 1). In case of fuel-
rich combustion, however, prompt NOx becomes relatively more important. Fuel NOx is only
present if the fuel contains nitrogen atoms bounded to other atoms than nitrogen (e.g. C or H).

NLR-TR-2014-150

 110

Appendix F NOx-reductions in gas turbines

As described in appendix E, there are four formation mechanisms by which NOx-emissions are
formed. When trying to reduce these emissions, the first thing one can think of is changing the
fuel composition. By choosing a fuel without nitrogen the fuel-NOx is zero. If a fuel without
hydrocarbons would be used, prompt NOx could also be reduced to low levels.
However, if total NOx emission levels are high, by far the most important source of NOx is
thermal NOx. Thermal NOx can be described by the Zeldovich mechanism (see appendix E).
The initiating reaction in the Zeldovich mechanism is very strongly dependent on temperature
and O radical concentration. The most important way to reduce NOx emissions is by lowering
the highest temperatures in the gas turbine. These temperatures normally occur in the
combustion chamber and the afterburner.
There are a number of ways to reduce the highest temperatures. The first way is by injecting
liquid water or steam in the combustion chamber. Because the specific heat at constant pressure
of water is quite high, a lot of enthalpy is needed to warm the water or steam, which causes a
lower combustion temperature and thereby reduces the amount of thermal NOx. This method is
often applied in industrial gas turbines. For aircraft gas turbines, steam/water injection is hardly
ever used because of the weight and volume of the water/steam that would have to be taken by
the aeroplane.
Another way to decrease the temperature is by changing the combustion process itself. This can
be achieved by changing the shape of combustion chambers. The highest temperatures in a
combustion chamber occur approximately at stoichiometric fuel-air-ratio. (When the specific
heat at constant pressure of either the fuel or the oxidant is lower, the highest temperatures will
occur slightly on the fuel-rich side or fuel-lean side.) Thus, the NOx-emissions can be reduced
by avoiding combustion at stoichiometric conditions. Burning in fuel-rich conditions can also
reduce NOx emissions because of the low O radical concentrations.
Especially diffusion flames have a nearly stoichiometric flame zone. When liquid fuels are used,
stoichiometric conditions often occur around the evaporating droplets. Therefore, NOx-
reductions can be achieved by vaporising liquid fuels before they are burnt. Another way to
avoid stoichiometric conditions is by thorough mixing of the fuel and oxidant prior to the
combustion process: in this so-called lean-premixed (prevaporised) combustion chamber, the
combustion equivalence ratio is (substantially) lower than one. The last way to avoid
stoichiometric zones mentioned here is by application of a so-called rich-quench-lean
combustion chamber. In the first part of this combustion chamber, fuel-rich burning occurs.
Because of the relatively low temperatures and low oxygen concentrations, NOx formation
remains low. After this, a lot of oxidant is mixed with the products of the fuel-rich combustion
causing the flame to quench. In the last part of the combustion chamber, the fuel-rich products

NLR-TR-2014-150

 111

and the oxidant that is left, are lighted and burn in a fuel-lean mixture. In figure F.1, F.2 and
F.3, a conventional combustion chamber, using a diffusion flame as well as a lean-premixed and
a rich-quench-lean combustion chamber are shown as well as possible multi-reactor models for
these combustors.

Figure F.1 Picture and flow model of an annular diffusion flame combustor

Figure F.3 Picture and flow model of a lean premixed/prevaporised combustor

Figure F.2 Picture and flow model of a rich-quench-lean combustor

NLR-TR-2014-150

 112

Appendix G An introductory description of GSP

In this appendix, some introductory remarks on GSP are made. For more information on GSP,
one should read (Visser, Ref. 43).

G.1 A general introduction to GSP
The development of the Gas turbine Simulation Program (GSP) started in 1986 by W. Boumans
at the Department of Aerospace Engineering at Delft University of Technology (DUT). The
base for GSP was NASA’s Dyngen, which was used before GSP at DUT, but showed
deficiencies. Improvements in GSP were made at the National Aerospace Laboratory (NLR),
where GSP was converted from ANSI FORTRAN-5 to DELPHI (object oriented Pascal,
Windows 95/NT application).

GSP is a so-called ‘component stacking program’: gas turbine configurations can be built by
putting together predefined components. These components include primary gas turbine
components, like a compressor, a turbine and a heat exchanger, but also control units, like a
power lever and a unit used to control the area of the exhaust of afterburning engines. The
components are primarily modelled in a zero-dimensional way, which means that only
conditions at the inlet and outlet of the components are calculated. As an example a GSP model
of an afterburning engine is shown in figure G.1.

Figure G.1 A GSP gas turbine model

Once the components have been selected, various input design data are required, like pressure
ratios, rotor speeds, etc. After the insertion of data, a design point calculation can be performed.
In the design point calculation, the design thermodynamic cycle and also the relevant geometry

NLR-TR-2014-150

 113

of the gas turbine is calculated. GSP is primarily used as an off-design gas turbine performance
simulation program. This means that for a given gas turbine, a model is built using (measured)
design point data, and performance prediction is calculated for off-design operating points. The
program can handle two sorts of off-design conditions: steady state series (or points) and
transients.

In steady state series a number of working points is calculated, assuming stationary working
conditions of the gas turbine. Therefore, all the acceleration terms in equations of motion are
made zero, so moments of inertia and mass do not matter in these calculations. Because in a
stationary working point the mass flow entering a component is equal to the mass flow leaving
it, volumes are not important either. Steady state calculations can easily be used to find the
relation between different gas turbine quantities in part-load situations. To find this, the easiest
way is to decrease the fuel flow gradually from the maximum value to the minimum value. The
program then calculates a range of working points. In every working point a large number of
quantities can be calculated and selected as output variables. After the calculations GSP offers
the possibility of making graphs with varying data on both axes.

In a transient simulation, a gradual change of situations is calculated, involving accelerations
and temporary accumulations of gases (eventually with condensed species) in components. In
this case, mass, volumes and moments of inertia do matter. Time only matters in transients, not
in steady state series.

G.2 GSP and the gas model
During all cycle calculations, the program goes through the gas turbine by solving equations
from the inlet to the exhaust. Each component involves a number of equations to be solved. The
inlet data for each component (except for the inlet and the fuel inlet of the combustion
chamber), are the outlet data of the component directly before the component considered. Thus,
data are passed on from component to component, describing the properties of the medium used
in the gas turbine. In GSP 7.0, among others, the following quantities are passed on from
component to component:
• mass flow,
• fuel-air-ratio,
• total temperature,
• total pressure.

In a design calculation, the design cycle is calculated, as well as the relevant flow areas in the
gas turbine. As a result, after the design point calculation, the geometry of the engine is fixed. A

NLR-TR-2014-150

 114

clear distinction has to be made between design data and off-design data. Design data determine
the design cycle and the geometry of the gas turbine, while off-design data only determine
separate working points. If design data are changed and a new design calculation is performed, a
different gas turbine ‘is designed’.

Once the gas turbine geometry is fixed, steady state series and transients can be performed.
During steady state series and transients, GSP uses a certain number of state variables and error
variables. The number of both is fixed per component, though it is not the same for all
components. State variables are the values of (primarily thermodynamic) gas turbine quantities
relative to the value of these quantities under design conditions. The number of state variables is
exactly the number of variables needed to solve the equations adhering to each component and
thereby to calculate the outlet conditions from the inlet conditions. Examples of state variables
are rotor speeds and the turbine pressure ratio relative to their values under design conditions.
The value of the state variables and thereby the working conditions of the gas turbine are found,
using the error variables, as follows. An initial guess of the state variables is made. Then GSP
calculates a cycle, using user specified quantities, and a number of deviations from the state
variables are found. These deviations determine the value of the error variables. Using the
values of the error variables new values for the state variables are calculated, and another cycle
is calculated which results in other values of the error variables. In this way, corrections to the
state variables are made until the error variables are considered small enough. Then the state
variables are known and so is the working point of the gas turbine. All other desired quantities
that were not necessary to find the working point are calculated now. If a number of subsequent
points are calculated, the state variables at the last point calculated before the one to be
calculated can be used as initial guesses for the state variables.

NLR-TR-2014-150

 115

Appendix H Details of the new GSP 8.0 gas model

In this appendix a detailed description of the GSP 8.0 gas model is given. For more details, the
Pascal code (with comments) in appendix K can be consulted.

H.1 General remarks
To calculate the relevant thermodynamic properties of the medium used by the gas turbine,
NASA polynomials are used. The NASA coefficients a1 up to and including a8, b1 and b2,
determining the specific heat at constant pressure, enthalpy and steady state entropy as a
function of temperature, are tabulated for all species, as well as coefficients used to find the
viscosity (see appendix C). Finally, the molar mass and the heat of formation are also added.
For water, the polynomials are only valid until 600 (K). The critical temperature for water is
647.29 (K). In figure H.1, the cp of water is given as a function of temperature. Although the
rise in cp between 600 (K) and 647.29 (K) is quite steep (may be too steep), the polynomial is
assumed to be valid until 647.29 (K), because the amounts of water present above 600 (K) will
be very small. Because the number of coefficients should be the same for all species, including
liquid water, coefficients for the temperature range above 1000 (K) have to be inserted into the
program. The coefficients for the polynomial valid above 1000 (K) are the same as for the
polynomial valid below 1000 (K) (actually to 600 (K) of course). Because at temperatures
higher than the critical temperature no water will be present, these coefficients are never used
and act as dummy-coefficients.

Figure H.1 Specific heat at constant temperature (cp) of water as a function of temperature

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700
Temperature (K)

CpH2O(L)

(J/kg/K)

NLR-TR-2014-150

 116

H.2 Determination of thermodynamic and thermal transport properties as a function of
temperature, pressure and composition
Like in CEA, the perfect gas law is assumed to be valid even when small amounts of condensed
species (up to several percent by weight) are present. Because condensed species are assumed to
occupy a negligible volume relative to the gaseous species, volumes refer to gases only, while
mass includes condensed species.

The specific heat at constant pressure
The specific heat at constant pressure at a given temperature is first calculated separately for
each of the species present in the mixture, using the polynomial (C.22). The specific heat at
constant pressure for the mixture is then found after applying (C.23).

The enthalpy
The enthalpy is calculated in the same way as NASA. First the enthalpy per specie is calculated
using equation (C.25), and subsequently the enthalpy for the mixture is found using equation
(C.26).

The specific gas constant
The specific gas constant of a mixture is calculated by multiplying the number of moles of
gaseous species per gram of mixture (n), calculated using equation (C.28), and the universal gas
constant, R, like in the CEA-program:

nRRg = (H.1).

If the mixture only contains gases, the value of the above equation is the same as the value of
the universal gas constant divided by the molar mass of the mixture (in this case both molar
masses used by NASA, calculated with equations (C.29) and (C.30) are the same). For mixtures
containing condensed species the specific gas constant is the same as the universal gas constant
divided by the molar mass defined by equation (C.29). By using the above equation (H.1), the
well-known expression for the speed of sound automatically becomes the same as equation
(C.39).

The entropy
The entropy is again calculated using the same formulas as the CEA-program uses. The
incoming mass fractions are first converted into mole fractions. After that the total mole fraction
of the gaseous species is calculated (needed for equation (C.32)). The next step is to calculate
the steady state standard entropy per specie divided by the universal gas constant Sj

0/R, using

NLR-TR-2014-150

 117

equation (C.34). With the pressure known, the entropy divided by the universal gas constant can
be calculated for each of the gaseous species using equation (C.32). Then, the entropy
contribution of the gaseous part of the mixture divided by the universal gas constant can be
found by taking the weighted average of the entropy values per specie using the mole fractions.
For water, the standard state entropy also follows from equation (C.34), using the universal gas
constant. According to equation (C.33) the entropy per specie for condensed species is equal to
their standard state entropy. The contribution of the (liquid) water is then added to the entropy
(divided by the universal gas constant) of the gaseous part. Multiplication with the universal gas
constant and division by the molar mass (g/mole) are needed to find the entropy for the mixture.

The ratio of specific heats
The value of γ is calculated in the same way as in GSP 7.0, using cp for frozen composition and
the specific gas constant calculated as defined above by equation (H.1).

The speed of sound
The speed of sound is calculated in the same way as in GSP 7.0. This is practically the same as
in the NASA CEA-program, although the ratio of specific heats (γ) is used instead of (γs). The
reason for this is that the ideal gas law is assumed to be valid, resulting in equal values for γ and
γs (see equations (C.37) and (C.38)). Because of equation (H.1), ‘nR’ in equation (C.39) is equal
to Rg. Therefore, equation (C.39) is found to be equal to (C.11).

The dynamic viscosity
The only thermal transport property calculated in the new gas model is the dynamic viscosity. It
is calculated in almost the same way as done in the NASA program. The mass fractions have to
be converted to mole fractions first. Once this is done, liquid species (water) are omitted and the
other mole fractions are increased so that the sum of the gaseous mole fractions equals one.
Then for all the non-zero fraction species, equation (C.40) is used to find the dynamic viscosity
per specie. Subsequently, for each component the viscosity interaction coefficient with the other
components is calculated using equation (C.43), and equation (C.41) is used to find the dynamic
viscosity of the mixture. Equation (C.42) is not used, because the interaction parameters needed
are given in CEA only for a number of components. Therefore, extra data for the available
interaction parameters would have to be inserted in GSP, and switches and new procedures
would become necessary to check whether interaction parameter data would be available and to
calculate them. Because the gain of applying these extra switches and procedures is assumed to
be small, the interaction parameters are not used.

NLR-TR-2014-150

 118

H.3 Modelling of composition changes
Like the NASA gas model, the GSP 8.0 gas model has a limited description of kinetics, only
using frozen or equilibrium compositions. If the processes are assumed to be slow in
comparison with the residence times in the components, a frozen composition is assumed.
Otherwise, the composition will change and the equilibrium composition is calculated.

In gas turbines, the composition of the working medium can change due to changing
temperatures and pressures if evaporation (/condensation) or dissociation occurs. Because
evaporation and dissociation involve conversion between potential energy and heat, evaporation
and dissociation also influence temperature itself. In order to find the composition and
temperature when evaporation or/and dissociation occur, the assumption is made that there is no
heat loss (i.e. adiabatic reactions) or pressure loss during the evaporation and dissociation. The
temperature and composition are then found in an iteration procedure solving the equilibrium
composition belonging to a certain temperature and checking the enthalpy balance (also called
energy equation) to see whether the temperature is correct.

H.3.1 Solving the enthalpy balance
The temperature is found assuming that the enthalpy before and after the process is equal (i.e.
the process is adiabatic). If the compositions of mixtures change, there are not only enthalpy
changes due to temperature changes, but there is also an enthalpy change due to the chemical
reaction (see appendix B).

To find the temperature after a change in composition, this enthalpy change due to reaction must
be taken into account. In the proposed gas model, the following procedure is applied, shown
schematically in figure H.2.

In this figure, the left side denotes the temperature and composition before the reaction takes
place and the right side after the reaction has taken place. In the vertical direction, temperature
varies. The arrows denote enthalpy changes because of processes (reactions or heating or
cooling of fixed compositions).

NLR-TR-2014-150

 119

Figure H.2 The relevant enthalpy changes used to solve the enthalpy balance (Kuo, Ref. 26)

First, the composition of the products after the process has taken place has to be known. If the
composition is a function of temperature, a guess of the composition can be used. Once this
composition is found three enthalpies are calculated. The first one is the enthalpy that is
obtained when the reactants are brought from their initial temperature Tinitial (of course, separate
reactants can also have different temperatures) to a temperature of 298.15 (K). The initial
temperature can also be lower than 298.15 (K) (see Tinitial’). This enthalpy is called the reactant
enthalpy. At 298.15 (K) the reaction (change of composition) is assumed to take place. From the
expected products of the reaction and the reactants, the heat of reaction can be calculated using
the heats of formation of reactants and products (see appendix B for an example). The sum of
these two enthalpies is the enthalpy available to warm the products to the new temperature. So
the correct temperature after the reaction is found if the available enthalpy is equal to the
enthalpy needed to bring the mixture to a new temperature Tfinal.

In the above description, three separate enthalpies are calculated to check the enthalpy balance.
However, because the (absolute value of the) enthalpy is defined in the same way as in the
NASA CEA-program, the assumption of adiabatic reactions simply results in equal summation
of enthalpies before and after the reactions.
This can be shown as follows. In the NASA CEA-program, the absolute value of the enthalpy is
defined by the fact that at 298.15 (K), the enthalpy of a specie must be equal to its heat of
formation at 298.15 (K). Therefore, the enthalpy for a specie can be written as:

() () ''
15.298'

15.298, dTTcHTh
T

T
pf ∫

=

+= (H.2),

where: Hf,298.15 = heat of formation at 298.15 (K).

NLR-TR-2014-150

 120

This results in the following expression for the enthalpy change involved in a temperature
change from T to 298.15 (K) (for one specie):

() () () ()

()∫

∫∫

=

==

=









+−+=−

T

T
p

T
pf

T

T
pf

dTTc

dTTcHdTTcHhTh

15.298'

15.298

15.298'
15.298,

15.298'
15.298,

''

''''15.298
 (H.3).

Next, a reaction where reactants A and B, at temperatures of respectively TA and TB undergo a
reaction and form products C and D, both at temperature Tfinal, is considered. Equating the sum
of reactant enthalpy and the heat of reaction to the needed enthalpy gives:

() () () (){ }

() ()()∫

∫∫

=

==

+

=+−+++

final

DC

DBA

B

B

A

A

T

T
pp

fCfff

T

T
p

T

T
p

dTTcTc

HHHHdTTcdTTc

15.298

15.298,15.298,15.298,15.298,
15.29815.298 (H.4).

Rearranging the terms in this equation gives:

() ()

() ()∫∫

∫∫

==

==

+++

=+++

final

DD

final

CC

B

BB

A

AA

T

T
pf

T

T
pf

T

T
pf

T

T
pf

dTTcHdTTcH

dTTcHdTTcH

15.298
15.298,

15.298
15.298,

15.298
15.298,

15.298
15.298,

 (H.5).

In other words (using (H.2)):

() () () ()finalDfinalCBBAA ThThThTh +=+ (H.6).

Studying the last equation, it is obvious that the enthalpies (defined according to equation (H.2))
before and after the reaction must be equal for adiabatic reactions.
Although it is easier to solve the enthalpy balance just by calculating the enthalpy values than
by separately calculating three enthalpies, this is not done in GSP 8.0. The main reason for this
is that the method calculating the three enthalpies is more general. In particular, it is
independent of the absolute values of the enthalpy. Therefore, less adaptations have to made to
the program if users want another definition for the absolute value of the enthalpy (e.g. the
enthalpy can be made zero at a temperature of 200 (K)).

NLR-TR-2014-150

 121

H.3.2 Determination of equilibrium compositions at a given temperature
Evaporation/condensation
The calculation of the equilibrium state is as follows. A polynomial is used to predict the
maximum vapour pressure of water. This polynomial is taken from (Ruijgrok, Ref. 39). It is
approximately valid until the critical temperature of water (647.29 (K)).
First, the temperature is compared to the critical temperature of water. If the temperature is
higher than the critical temperature, all the water in the mixture is vaporised. If the temperature
is lower than the critical temperature, the maximum vapour pressure is compared with the
vapour pressure of water if all the water were gaseous. If the maximum vapour pressure is
higher than this vapour pressure, all the water will be vaporised. If the maximum vapour
pressure of water is exceeded, a part of the water must become liquid.

Dissociation
As stated in appendix B (paragraph 4), an equilibrium can be calculated either by optimisation
of a thermodynamic function (e.g. entropy or free energy) or by using equilibrium constants
(see for example Gordon, Ref. 15). The last method is applied here, because the number of
equations to be solved is not very big.

In chapter 4, it was stated that in the gas model, (outside the combustion chamber) only
dissociation of water and carbon dioxide to hydrogen, carbon monoxide and oxygen were
considered, according to equations (4.1) and (4.2). These two reactions lead to the following
equations for the equilibrium constants to be solved (see appendix B, paragraph B.4):

N
p

n
nn

K
CO

OCO
COp

2

2

2, = (H.7),

N
p

n
nn

K
OH

OH
OHp

2

22

2, = (H.8).

Because there are five unknown concentrations, three additional equations are needed to
determine the composition. These three equations are the atom conservation equations for C, H
and O:

afterCOCObeforeCOCO nnnn)()(
22
+=+ (H.9),

afterHOHbeforeHOH nnnn)()(

2222
+=+ (H.10),

NLR-TR-2014-150

 122

afterOHCOCOObeforeOHCOCOO nnnnnnnn)22()22(

222222
+++=+++ (H.11).

In these equations ‘before’ and ‘after’ mean before reaction and after reaction. Conservation of
N is automatically taken care of, because the amounts of nitrogen containing species (N2, NO
and N2O) are assumed to be constant. This approach is only valid until temperatures of around
2200 (K). Whether NO is really constant is the question. NO formation and depletion is
thoroughly discussed in chapter 6, where the emission model is shown.

For temperatures above 2200 (K), another (similar) procedure can be used, which is a part of the
combustor model, and is to be described in appendix J. In this model, three additional species
may be present: O, H and OH. Also, equilibrium concentrations of NO and N2O are calculated,
but these are only needed for the emission model, which is part of the combustor model.
Because the temperatures outside of the combustion chamber will not likely exceed 2200 (K),
this last procedure is only used in the combustion chamber.

In both the mentioned procedure for dissociation and the procedure which is part of the
combustor model, a number of equations (equilibrium constants and conservation of species
equations) need to be solved to find a number of fractions. In both procedures, this is done in
the same way. First, an initial guess is made of a fraction. Because the number of unknown
fractions is equal to the number of equations, the other unknown fractions can be calculated for
this guess and also a new value is found for the guessed fraction. The correct fraction is found if
the new value for the fraction is equal to the guessed one. Therefore, the deviation of the new
value from the guessed one is used to find the correct fraction and therefore the correct
equilibrium composition.

The choice of the fraction to be guessed is determined by the fact that it must be a non-zero
(because of limited Delphi accuracy not below 1e-15) fraction under all circumstances,
otherwise, the equations can't be solved. Species containing C and H-atoms can't be chosen,
because it must be possible to burn hydrogen in air (not containing carbon dioxide) and to burn
fuels only containing carbon (e.g. pure carbon monoxide). In those cases, the guessed fraction
would be zero. Taking nitrogen or argon leads to problems if not air is used, but pure oxygen.
Therefore, the most logical fraction is the O2-fraction, because it will always be present in gas
turbine cycles comprising combustion processes. Another reason to choose the O2-fraction is
because it couples the equations for the equilibrium constants ((H.7) and (H.8)). If the O2-
fraction is guessed, both equations can be solved separately.

NLR-TR-2014-150

 123

However, problems will be encountered when the O2-fraction becomes smaller than 1e-15,
because of the limited (standard) accuracy of Delphi. This problem could be solved by
increasing the accuracy of the Delphi-calculations. However, this will take more calculation
time, and O2-fractions lower than 1e-15 usually occur only for (very) rich mixtures (equivalence
ratio above (about) 1.7) especially at low temperatures, which are not likely to occur in gas
turbines, especially not outside the combustion chamber.

H.4 Total versus static temperatures and pressures
In gas turbine performance calculations, total temperatures and pressures are often used. The
relations between total and static temperature and total and static pressure are:







 −
+= 2

2
11 MTT st

γ
 (H.12),

12

2
11

−







 −
+=

γ
γ

γ MPP st (H.13).

Table H.1 Ratios of total and static temperature and pressure for various gammas

Gamma: 1,01 1,1 1,2 1,4 1,6

Mach: Tt/Ts Pt/Ps Tt/Ts Pt/Ps Tt/Ts Pt/Ps Tt/Ts Pt/Ps Tt/Ts Pt/Ps
0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
0,10 1,00 1,01 1,00 1,01 1,00 1,01 1,00 1,01 1,00 1,01
0,20 1,00 1,02 1,00 1,02 1,00 1,02 1,01 1,03 1,01 1,03
0,30 1,00 1,05 1,00 1,05 1,01 1,06 1,02 1,06 1,03 1,07
0,40 1,00 1,08 1,01 1,09 1,02 1,10 1,03 1,12 1,05 1,13
0,50 1,00 1,13 1,01 1,15 1,03 1,16 1,05 1,19 1,08 1,21
0,75 1,00 1,33 1,03 1,36 1,06 1,39 1,11 1,45 1,17 1,52
1,00 1,01 1,65 1,05 1,71 1,10 1,77 1,20 1,89 1,30 2,01

In these equations, M is the Mach number and the subscripts ‘t’ and ‘s’ denote total and static
respectively. In table H.1 the differences between static and total temperatures and pressures are
calculated for a number of γ’s and Mach numbers.

The static temperature of gases is due to Brown’s heat movement and can be seen as a measure
of energy contained in the molecules because of their speed in random direction (a vibration
around the equilibrium composition). The difference between total and static temperatures is
due to the speed that all the molecules have in common. Therefore, the total temperature of the
gases is a sort of (static) temperature taking into account both aforementioned speeds. Because

NLR-TR-2014-150

 124

of this, total temperatures are often used to calculate thermodynamic properties as if they were
static temperatures. Because the Mach numbers and γ’s in gas turbines aren’t very big, the
difference between total and static temperatures remains limited. A second reason to use total
temperatures is that they remain constant in adiabatic processes (no heat loss), no matter what
happens with the flow velocity. A number of processes in the gas turbine (like compression in
the inlet) can be assumed adiabatic with reasonable accuracy.

For total pressures to remain constant however, processes need to be isentropic, which can
hardly be assumed to be the case in gas turbine components. The differences between total and
static pressures are bigger than the differences between total and static temperatures, as can be
seen from the power in equation (H.13) (γ>1) and table H.1. However, total pressures are often
used in gas turbine performance calculations.

In GSP 7.0, almost everywhere total temperatures and pressures are used to describe the gas
conditions. Only if geometric data of the engine are available, because the speed of the gases is
needed, like in the exhaust, static data are used.

In GSP 8.0, a few extra procedures are used compared to GSP 7.0. The procedures used to
calculate composition changes due to evaporation and dissociation need pressures and
temperatures. For the same reasons as described above, total temperatures are used here as if
they were static temperatures. An important issue however, is whether the pressures used by the
procedures have to be static or total. To calculate static pressures from total conditions,
geometric data of the gas turbine (e.g. areas) have to be known. Because geometric data are gas
turbine specific, it is preferable not to use these data, because it means that more data have to be
specified.

Therefore, in GSP 8.0 total pressures and temperatures are used at locations where no geometric
data are known, i.e. everywhere except in the combustion chamber and the exhaust. The
modelling of the combustion chamber is described in chapter 6.

NLR-TR-2014-150

 125

Appendix I Calculation of compressor and turbine performance with
real gas effects

I.1 Calculating outlet conditions
In the compressor and turbine, the isentropic efficiency is used to calculate the conditions at the
outlet. If the composition is constant, this is done as indicated in figure I.1. The f denotes a
functional relationship.

Figure I.1 Calculation of the outlet conditions
assuming constant composition

The pressure ratio is either user-specified in the case of the design point or it is treated as a state
variable (see paragraph G.2). The outlet pressure is found by multiplying the inlet pressure by
the pressure ratio. Using the pressure ratio and the inlet conditions, the isentropic enthalpy
change can be found and multiplying this with the isentropic efficiency yields the real enthalpy
change. From this enthalpy change, the temperature at the outlet can be calculated.

Because the composition is variable now, the first interesting question is whether the varying
composition is accounted for in the isentropic efficiency or not. In other words, is the isentropic
efficiency defined using a constant composition or a changing composition? This is an
important issue because a changing composition yields a changing entropy. It is to be expected
that the isentropic efficiency is determined under conditions where the composition remains
unchanged. Possibly, the changing compositions could lead to (isentropic) enthalpy changes too
much different from (isentropic) enthalpy changes in case of constant composition, because the
changing composition can have a big effect on entropy changes. Therefore, the isentropic
efficiency is used assuming that it is defined for constant composition.

P = f(PR)

His = f(PR)

Hreal = f(ηis,His)

Treal = f(Hreal)

NLR-TR-2014-150

 126

Figure I.2 Calculation of the outlet conditions assuming variable composition

The outlet conditions of the compressor and turbine are calculated as follows, see figure I.2. As
described above, using the pressure ratio, the inlet conditions and the isentropic efficiency, the
enthalpy at the outlet is found. A check is made to see whether the assumed (constant)
composition can exist at outlet conditions (temperature and pressure). If this is the case, the
outlet conditions are known. If not, the newly calculated composition is used to find a new
value for the temperature. The composition at this temperature is determined and compared with
the composition found at the last iteration (the assumed composition). This process is repeated
until the difference between the two compositions is considered small enough.

I.2 Using maps
Because the compositions have become variable, adaptations are needed when using maps to
predict off-design performance of compressors and turbines. A first important question is
whether maps can also be used when liquid species (e.g. water) are present. The assumption is
made that they are valid, because otherwise (without maps), off-design behaviour could not be
described at all. Once the maps are assumed to be valid, the question rises how the
dimensionless parameters in the map should be calculated when different (two-phase)

Assumed and calculated composition the same?

yes
no

Outlet conditions known

P = f(PR)

His = f(PR)

Hreal = f(ηis, His)

Treal = f(Hreal, Assumed composition)

Composition = f(Treal, p)

NLR-TR-2014-150

 127

compositions are encountered. The relevant dimensionless parameters are the component
(isentropic) efficiency (η), the dimensionless number of rotations, the dimensionless mass flow
and finally the pressure ratio. To account for the effects of boundary layers on component
performance, the isentropic efficiency can be corrected for changing Reynolds numbers,
because the dynamic viscosity is calculated in the new GSP 8.0 gas model.

The definition of the component (isentropic) efficiency for varying compositions has been
described above. The pressure ratio only depends on pressures and therefore remains unchanged
if (only) compositions change. To find the way to account for changing compositions in the
dimensionless number of rotations and the dimensionless mass flow, the reason why maps, and
the dimensionless parameters appearing in maps, are used should be clarified first (Cohen, Ref.
9).

The non-dimensional method of plotting characteristics is based on the assumption that
components will yield the same performance (in terms of pressure ratios, temperature ratios and
isentropic efficiencies) if similar velocity triangles are encountered in the compressor or turbine.
To achieve these similar velocity triangles, two Mach numbers should be the same, the Mach
number of the rotor blade tips and the flow Mach number.

The dimensionless number of rotations
The dimensionless number of rotations represents the Mach number of the rotor blade tips. The
Mach number of the rotor blade tips can be calculated using:

TR
NLM

g
R γ
= (I.1),

where: MR = Mach number of rotor blade tips (-),
 N = number of rotations in time (rad/s),
 L = characteristic length (m).

It is obvious that the numerator of this expression is the rotor tip speed and the denominator is
the speed of sound. For the characteristic length, a diameter in the engine is usually used.
Because this diameter is constant, it is left out of the dimensionless number of rotations, which
is therefore not truly dimensionless. If the composition in the component is constant, the values
for γ and Rg are the same for all working points and these can be omitted from the above
expression too. If the composition can change, however, γ and Rg are also variables. Therefore,
the following expression should stay the same to retain the same Mach number of the rotor
blade tips:

NLR-TR-2014-150

 128

TR
N

gγ
 (I.2).

Because GSP doesn’t use dimensionless parameters, but corrected numbers, the following
expression will be used for maps in the new version of GSP:

ststgst

g
c

TR
TR

NN

,γ
γ

= (I.3).

In this expression, the subscript ‘st’ stands for standard conditions.

The dimensionless mass flow
The dimensionless mass flow represents the flow Mach number. Using

VAm ρ= (I.4),

where: m = mass flow (kg/s),
 ρ = density (kg/m3),
 V = flow velocity (m/s),
 A = flow area (m2),

and the ideal gas law, the following expression can be derived for the flow Mach number:

γ
g

F

R
Ap

Tm
a
VM == (I.5).

The area A, taken somewhere in the gas turbine is usually constant, so it can be omitted. Again,
if the composition can change within the component considered, γ and Rg are not constant and
therefore cannot be omitted. So for the corrected mass flow the following formula can be used:

γ
γ

stg

stg

st

st
c R

R

p
p
T
Tm

m
,

= (I.6).

NLR-TR-2014-150

 129

The Reynolds number
A new feature in GSP 8.0 is that the influence of different Reynolds numbers on isentropic
efficiency can be modelled. The Reynolds number is defined as:

µ
ρVL

L =Re (I.7),

where: ρ = density (kg/m3),
 V = flow speed (m/s),
 L = characteristic (geometric) length (m),
 µ = dynamic viscosity (kg/m/s).

This quantity indicates the relative importance of the shear and the inertia forces within the
flow; the lower the value of the Reynolds numbers, the more important (relatively) are the
viscous forces. As a result, lower Reynolds numbers will be accompanied by bigger boundary
layers. These will have a negative influence on the component efficiency.

To denote the influence of Reynolds number on efficiency, the dimensionless Reynolds Number
Index (RNI) is used. This is the actual Reynolds number divided by the Reynolds number of air
under standard conditions. Because the characteristic length is usually a constant length
somewhere in the gas turbine, it cancels out. The effect of speed on component performance is
already accounted for in the dimensionless mass flow and dimensionless number of rotations.
Therefore, the effect of speed on Reynolds Number Index is not taken into account. The
following equation is found for the Reynolds number index:

st

ststL

LRNI

µ
ρ
µ
ρ

==
,Re

Re
 (I.8).

Using the perfect gas law, this relation becomes:

ststg

g

st

st

R
R

T
T

p
p

RNI

µ
µ

,

= (I.9).

All quantities in this equation are calculated in the gas model.

NLR-TR-2014-150

 130

Appendix J Calculating combustion equilibrium

The way of calculating the equilibrium composition and temperature is the same as used in the
gas model, described in paragraph H.3. For a given temperature, the equilibrium composition
can be calculated. To see if this temperature is correct, the enthalpy balance is solved.

J.1 Solving the enthalpy balance
In this paragraph, it is described how to calculate the relevant enthalpies, shown in figure H.2.
In GSP 8.0 two types of fuels can be specified:
• fuels with complete composition specified,
• fuels with composition characterised by H/C-ratio.

Fuels with complete composition specified

Figure J.1 User interface for fuel with user specified composition

To start with, the available enthalpy has to be calculated as the sum of the reactant enthalpy and
the heat of reaction. For these fuels, the composition can be specified in terms of (mass or
volume) fractions of the following species: (CO2, CO, O2, Ar, H2O(g), H2O(l), H2, CH4, C2H6,
C2H4, C3H8, C4H10, O, H, OH, CxHy, O2). The user interface for these fuels is (partly) shown in
figure J.1. The component CxHy allows users to specify a hydrocarbon component different
from the specified ones. For all these species, except for CxHy, thermodynamic data are present

NLR-TR-2014-150

 131

in GSP (see chapter 4 and appendix H). Therefore, for CxHy some extra data need to be
specified by the user: the values of ‘x’ and ‘y’, the heat of formation at 298.15 (K) and the
average cp between the fuel injection temperature and 298.15 (K). The reactant enthalpy can
easily be calculated using the user specified fuel temperature and formulae (C.25) and (C.26) to
find the enthalpy for the composition (except for CxHy) at both the temperatures. The enthalpy
change for CxHy is calculated by multiplying the cp from the interface by the temperature
difference between fuel injection temperature and 298.15 (K).

If the product composition is known, the heat of reaction is found as the difference between the
summation of formation enthalpies of the reactants and products.

Fuels with composition characterised by H/C-ratio

Figure J.2 User interface for standard fuel (composition not exactly known)

Apart from fuels with a specified composition, a number of other fuels can be chosen: jet fuels
(Jet-A, Jet-B (=JP-4) and JP-5), diesel, hydrogen and natural gas. The user interface for these
fuels is shown in figure J.2. (The fuel temperature is not completely visible due to the pull-down
menu on the left.) The composition of jet fuels, diesel and natural gas, which are assumed to
consist completely of hydrocarbons, is characterised by (molar) H/C ratio, to be specified by the
user. For calculation reasons, the chemical formula for these fuels is C(1)HH/C. (This approach is
also used for jet fuels in the NASA CEA-program (McBride, Ref. 30)). Because reducing actual

NLR-TR-2014-150

 132

hydrocarbons to CHH/C is only a measure of dividing molecules into smaller ones, the difference
is only important for gas properties given per mole. In a mass quantity, the amounts of carbon
and hydrogen are still the same. CHH/C is named CxHy in the composition vector. For hydrogen,
no H/C ratio is specified, because no carbon is assumed to be present.

To calculate the reactant enthalpy, the cp of the fuels has to be known. The assumption is made
that the slope of the cp-polynomial (as a function of temperature) of jet fuels and diesel is the
same as that of (liquid) Jet-A. The slope of the cp-polynomial of natural gas and hydrogen is
assumed to be the same as that of methane and pure hydrogen, respectively. The slopes of
methane, hydrogen and liquid Jet-A are taken from the NASA CEA-program. To allow for
(small) differences in the fuel, the absolute value of cp is determined by the user: the user
specifies a cp value at a certain (user specified) temperature, and the cp-polynomial is moved
upwards or downwards. For jet fuels and diesel, this temperature must be between 220 and 550
(K) while for other fuels it must be between 200 and 6000 (K). Now that the cp-polynomial is
known, the reactant enthalpy can easily be calculated.

The determination of the heat of reaction for these fuels is less easy than for fuels with user
specified composition. It is calculated using the fuel lower heating value, which is to be given
by the user. The lower heating value at a certain temperature is defined as the heat released if a
reactant (at the given temperature) is completely burnt and the products are cooled to the
reactant temperature, where water is assumed to stay in the vapour phase. In case of complete
burning, the lower heating value could be directly used as the heat of reaction. However, in gas
turbine combustion chambers, combustion is seldom (locally) complete because of fuel-rich
zones and dissociation. This causes the heat release to be lower than the heating value.
Therefore, the lower heating value is converted into a heat of formation of the reactant (CHH/C
or H2) at 298.15 (K).

This is done in two steps. Because the lower heating value is specified at a reference
temperature (the same temperature as where the cp is specified, see above), that is not
necessarily 298.15 (K), the first step is converting the given heating value to the heating value at
298.15 (K). This can be done using the fact that at constant pressure (or volume), the heat
released by a process is independent on the path chosen (see appendix B). In figure J.3, it is
shown that the change from state A to state B can be made by letting the reaction take place at
T1 and subsequently heating the products to T2, but also by heating the reactants to T2 and
letting the reaction take place at T2. The resulting heat change must be the same for both
reaction paths. Therefore, the following equation relates the heat of reaction at two different
temperatures:

NLR-TR-2014-150

 133

)()(2products1reactants THHTHH rr ∆+∆=∆+ (J.1)

where: ∆Hr(T) = Heat of reaction at temperature T (J/kg).

Figure J.3 Different temperature paths leading to the same state (Kuo, Ref. 26)

Because the lower heating value assumes complete combustion, the products are carbon dioxide
and water in a ratio determined by the H/C-ratio. The enthalpy change involved in heating the
reactants is calculated in the same way as the reactant enthalpy (see above). The lower heating
value at 298.15 (K) is calculated using equation (J.1).

The second step is calculating the heat of formation of the fuel from the lower heating value at
298.15 (K). This can easily be done, because the lower heating value is equal to the heat of
reaction if the combustion is complete. Because the heat of reaction is the summation of
formation enthalpies, and because the formation enthalpies of water (vapour) and carbon
dioxide are known, the heat of formation of the reactant (fuel) can be calculated. Now, the heat
of reaction in situations of non-complete combustion can simply be calculated as the difference
between summations of formation enthalpies.

For both categories of fuel, the needed enthalpy is calculated in exactly the same way as
described in appendix H, by heating the products to the equilibrium temperature. Here, the CxHy
component is assumed zero, so no unknown cp-polynomial is needed. The assumption that no
significant amounts of hydrocarbons will be present in the equilibrium products is reinforced by
(Holderness, Ref. 18), stating that hydrocarbon equilibrium fractions are usually negligible for
equivalence ratios lower than 3 (or even higher). The equivalence ratios in gas turbines will
usually not exceed 1.8.

NLR-TR-2014-150

 134

J.2 Calculating equilibrium at a given temperature
The method used to calculate the equilibrium composition at a given temperature in the
combustion chamber is similar to the method used to calculate the equilibrium composition in
case of dissociation in the gas model. However, because the temperatures in the combustion
chamber are assumed to be higher than the temperatures in other components, more species will
have significant fractions in the equilibrium compositions. Therefore, O, H, and OH are added
to the fractions to be calculated. Because the NOx emission model needs the NO and N2O
equilibrium fractions, N2, NO and N2O equilibrium concentrations are also calculated.
Because of these six extra species, six extra equations are needed (to be added to equations
(H.7) to (H.11)). The nitrogen atom balance forms one equation:

afterNOONNbeforeNOONN nnnnnn)22()22(
2222
++=++ (J.2).

The five additional equations are formed by five extra equilibrium constants added:

1

,

−







=

N
p

nn
nK

HO

OH
OHp (J.3),

N
p

n
nK

H

H
Hp

2

, = (J.4),

N
p

n
nK

O

O
Op

2

, = (J.5),

2
1

,

2

−







=

N
p

nn
nK

ON

NO
NOp (J.6),

1

,
2

2

2

−







=

N
p

nn
n

K
ON

ON
ONp (J.7).

These equilibrium constants are not based on actual (significant) reactions. Because the
equilibrium state is assumed to be reached, all the reactions are in equilibrium, so it doesn’t
matter what reaction is used.

NLR-TR-2014-150

 135

The iterative procedure used to find the equilibrium composition is similar to the one used to
find the dissociation equilibrium composition. It starts with the guess of a fraction. For this
guess, the other fractions are calculated and a new value for the guessed fraction results. The
deviation between the guessed value for the fraction and the new value found, is used to
determine the correct value for the fraction. Once this correct value is found, the equilibrium
composition is also found. Because the guessed fraction must be non-zero under all
circumstances to enable solving the system of equations, the O2-fraction is guessed. An
additional advantage of choosing the O2-fraction is that the O-fraction can be directly calculated
using equation (J.5). The O-fraction couples equation (J.3), (J.6) and (J.7). Therefore, the
system is partially decoupled, and less effort is needed to solve the equations.

However, the choice of the O2-fraction as the guessed fraction also entails a problem. Standard
Delphi numbers have a limited accuracy. This gives problems if the fractions are lower than
1.10-15. Therefore, the above method can only be used as long as the O2-fraction is higher than
1.10-15. Usually, this is no problem, but for very rich mixtures (equivalence ratios higher than
approximately 1.7, depending on temperature) the O2-fraction can become smaller, especially if
the temperature is low. To solve this problem, special numbers could be used in Delphi for the
concentrations. This would result in higher accuracy (in the order of 1.10-30), but also in longer
computation times. Because in all practical cases, the O2-fraction is assumed to be higher than
1.10-15, standard numbers are used.

NLR-TR-2014-150

 136

NLR-TR-2014-150

 137

Appendix K Delphi code of the gas and combustor model

The new functions and procedures of the gas and combustor model are placed in the units
‘Combusn.pas’ and ‘GSPglobal.pas’. In Combusn.pas, procedures and functions only used in
the combustion chamber are present. GSPglobal.pas is a unit that is used in all the components.
Therefore, all the function and procedures to be used in the new gas model are placed in
GSPglobal.pas. It is noted that the Delphi-code listed in this report is the initial code as
developed by Kluiters. Current GSP code can be modified and extended.

K.1 Structure of the gas and combustor model
In this paragraph, the relations between the functions used by the gas and combustor model are
shown. The structure diagrams presented in this chapter give the relations between the major
part of the new functions. However, not all the functions and relations are shown in these
diagrams to enable better overview. There are five important functions that are not shown
because they are used very often throughout the complete gas and combustor model. They
convert mass fractions into mole fractions or volume fractions and the other way around. These
functions are:
• molecomposition,
• masscomposition,
• volumecomposition,
• HCratiomasscomposition,
• HCratiomolecomposition.

Gas model
In figure K.1, the structure of the gas model is shown. To start with, the functions used to
calculate the thermodynamic properties are depicted.
• Calculating the specific heats for the species (using equation (C.22)) by the function

FCpPerSpecie and subsequently taking the weighted average (using equation (C.23)) by
FCp achieve the calculation of the specific heat at constant pressure.

• The enthalpy is calculated in the same way. EnthalpyPerSpecie is used to find the enthalpy
for the separate species, using equation (C.25), and FH for the enthalpy of the complete
mixture using equation (C.26).

• The specific gas constant is calculated by function FR, using equation (H.1).
• The entropy is calculated by the function FS using equations (C.32) and (C.33) and the

function FSperSpecie calculating the steady state entropy using equation (C.34).

NLR-TR-2014-150

 138

• The ratio of specific heats (gamma) is calculated by function FGm applying equation
(C.10) using the functions for the specific heat at constant pressure and the specific gas
constant.

Fi
gu

re
 K

.2
 P

as
ca

l c
od

e
st

ru
ct

ur
e

of
 th

e
ne

w
 p

ar
ts

 o
f)

th
e

co
m

bu
st

or
 m

od
el

NLR-TR-2014-150

 139

The speed of sound is determined using the function FCs, that uses the ratio of specific heats
and specific gas constant according to equation (C.11).
• There is no procedure to explicitly calculate the dynamic viscosity. However, it is

calculated within the procedure ReynoldsNumberIndex, using equations (C.41) to find the
dynamic viscosity and (I.9) to calculate the Reynolds Number Index. The function
ViscosityPerspecie applies equation (C.40) to find the viscosity per specie and PhiIJ uses
equation (C.43) to find the viscosity interaction parameter. Because equation (I.9) contains
the specific gas constant, the function FR is also used.

Also in figure K.1, the procedures determining the equilibrium composition and temperature are
shown. First of all, the function EquilibriumH2O determines the equilibrium between liquid
water and water vapour at a given temperature, by comparing the maximum partial water
vapour pressure determined by PmaxH2Ovapour with the vapour pressure that would result if
all the water would be vapour. To find the correct temperature together with the correct
equilibrium composition, the method described in paragraph H.3 is used. To calculate the
enthalpies depicted in figure H.2, the procedures RH and FormationEnthalpy are used. RH
determines enthalpy changes involved in temperature changes from or to the chemical reference
temperature of T = 298.15 (K) (Reactant enthalpy and Needed enthalpy), while
FormationEnthalpy is used to find the heat of reaction (by summation of formation enthalpies).
If the temperatures are higher than 1800 (K), the function Dissociation is used to find the
equilibrium composition at a given temperature, taking dissociation into account to a limited
extent. The assumption is made that it is approximately valid until T = 2200 (K). This function
uses CalcEqConst to calculate the value of equilibrium constants. The procedure
GetConcentrations is (only) locally used within Dissociation.

Combustor model
In figure K.2, the structure of the combustor model is shown. The central procedure
coordinating the combustion calculations is TCombustor.Calc. This procedure is not shown
here, because it was already present in GSP 7.0. TCombustor.Calc uses four new functions. The
points in the boxes denote old functions (that are still used).
The function FuelFormationandReactantEnthalpy is used to determine the heat of formation
and reactant enthalpy for fuels whose exact composition is not known. The function
FCpPerSpecie is used to calculate the difference between the user specified specific heat at
constant pressure and the standard value for the fuel. Using this difference, the specific heat at
constant pressure is found as a function of temperature (see paragraph J.1). This is used by the
function EnthalpyChange to calculate the reactant enthalpy and the enthalpy involved in a

NLR-TR-2014-150

 140

temperature change of the reactants, needed to find the heating value at the chemical reference
temperature (T = 298.15 (K)). The function FormEnthFromHeatValue is subsequently used to

calculate the heat of formation from the lower heating value at the chemical reference
temperature.

NLR-TR-2014-150

 141

For each combustion chamber in a gas turbine model, the procedure MultiReactorLoop is called.
This procedure, depicted in figure K.3, uses the procedure EquilibriumReactor for each reactor
in the combustor model. Within EquilibriumReactor, the equilibrium temperature and
composition as well as the emission levels are calculated. The function FR is used to calculate
the density, used for conversions, from pressure and temperature (using the ideal gas law).
In EquilibriumReactor, first a guess of the equilibrium composition is made using
MixGasComposition in case there is no fuel added and otherwise using ProdfromReact.
MixGasComposition simply mixes compositions assuming no reactions to occur.
ProdfromReact assumes complete combustion if enough oxygen is present. Otherwise the fuel
reacts to CO and H2 and eventual oxygen left is used to partly oxidise CO and H2. No
dissociation is modelled here. Like in the gas model, the combination of RH and
FormationEnthalpy is used to calculate the relevant enthalpies involved in chemical reactions
(see figure H.2). The specific heat at constant pressure cp is only used in the guess for the
temperature.

Once the temperature and composition guesses are found, the actual equilibrium temperature
and composition are found using RH and FormationEnthalpy again for the enthalpy changes for
the chemical reactions. Only now, CombEquilibrium is used to find the equilibrium composition
at given temperature (and pressure). CombEquilibrium takes dissociation into account, and can
be used for temperatures higher than the maximum temperature of 2200 (K) for Dissociation.
Like Dissociation, CombEquilibrium uses CalcEqConst to calculate the equilibrium constants.
CombEquilibrium comprises a function only used there: GetTotalMoles. Here, a difference is
made between the total and static temperatures and pressures using GetStatic, in case the cross-
sectional area is specified, GetStaticfromM in case of Mach-number specified and
GetStaticfromV in case flow speed is specified. Both last functions use the ratio of specific heats
for the relation between total and static properties and the speed of sound to find the relationship
between the flow speed and Mach-number. The function FR is again only used to find the
density of the flow.

Once the equilibrium composition and temperature are found, the emission levels can be found.
The procedures FPromptNO, FFuelNO, FCORise, FSmokeProduction and FUHCProduction
are used to find stepwise emission formation in the flame(s) of resp. prompt-NOx, fuel-NOx,
CO, Soot and UHC. For calculation of prompt-NOx formation the equivalence ratio is
necessary. This is found using StoichFuelFlow or ChemicalEqRatio. Within the procedure
FPromptNO, the mole fraction of hydrocarbon species is found using MolarHCratio and the
stoichiometric equilibrium NO-concentration is calculated by a separate procedure
StoichNOEquilibrium. Within this procedure, ChemicalEqRatio is used to find the fuel-flow that

NLR-TR-2014-150

 142

makes the mixture stoichiometric. RH, FormationEnthalpy, ProdfromReact, FCp, GetStatic and
CombEquilibrium

are, like in EquilibriumReactor, used to find an equilibrium guess and the actual equilibrium
composition and temperature. In FindExitEmissions, the trapezium rule is used to find the
emission levels and formation rates. To achieve this, EmissionFormationRate is used. In this

NLR-TR-2014-150

 143

procedure, the emission formation rate (time-derivative) is calculated using equilibrium
concentrations, temperature, pressure and the current emission specie concentration.
Because all these calculations are rather time-consuming and because a lot of cycle calculations
can be necessary to find the correct values for state variables (see paragraph G.2), a separate
procedure SingleReactorLoop was designed for calculations necessary to find the state
variables. Once the state variables are found, the procedure MultiReactorLoop, as described
above will be used. In figure K.4, the structure of SingleReactorLoop is shown. Like
MultiReactorLoop, EquilibriumReactor is used. Only now, it is only called once: the
combustion chamber is modelled as one single reactor in order to calculate the equilibrium
outlet conditions. Because only one reactor is used, the emissions can’t determined. Therefore,
their boxes are shown with dashed lines in figure K.4.

The function CombustionEnthalpy (see figure K.2) is used to find the heat of reaction of a
combustion reaction using the function FormationEnthalpy. In other functions the heat of
reaction of combustion reactions is also calculated, but there it is calculated only using
FormationEnthalpy (i.e. without explicitly calling CombustionEnthalpy).

K.2 Pascal code of the new procedures
In this paragraph, the Pascal code of the (new) functions and procedures mentioned in paragraph
K.1 are shown. They are put in alphabetical order to enable easier finding. Behind the name of
the function (/procedure), the GSP unit where the function is placed is stated.

CalcEqConst (GSPglobal.Pas)
//The purpose of this function is to calculate the equilibrium constant at a
//given temperature.
function CalcEqConst(T:double;Pol:Carray9):double;
 begin
 Result:=Power(10,Pol[1]*IntPower(T,-2)+
 Pol[2]*IntPower(T,-1)+
 Pol[3]*LN(T)*IntPower(T,-1)+
 Pol[4]*LN(T)+
 Pol[5]+
 Pol[6]*T+
 Pol[7]*IntPower(T,2)+
 Pol[8]*IntPower(T,3)+
 Pol[9]*IntPower(T,4));
 end;

ChemicalEqRatio (GSPglobal.Pas)
//This function calculates the chemical equivalence ratio. This is simply the
//quotient of the total oxygen needed for a stoichiometric mixture and the total
//oxygen that is present in the mixture. For the difference between the chemical
//equivalence ratio and the more known equivalence ratio defined by the quotient
//of actual fuel-air-ratio and stoichiometric fuel-air-ratio, readers are
//referred to NASA RP1311, Users Manual. However, a few remarks are made here:
//if all the positive valence atoms (C,H,..) are present in the fuel and all the
//negative valence atoms (O,..) in the oxidator, the two equivalence ratios are
//equal. If not, they are still equal when they are one (stoichiometric
//mixture), and they are both smaller than one for lean mixtures and higher than

NLR-TR-2014-150

 144

//one for rich mixtures. The chemical equivalence ratio can be determined for a
//mixture, without prior knowledge of the fuelcomposition, for the other
//equivalence ratio, the fuelcomposition must be known.
function ChemicalEqRatio(const GasComposition: TGasComposition;
 const HCRatio : Double) : Double;
 var
 O2needed, O2available, CinMixture, HinMixture, OinMixture : Double;
 GasComp :
TGasComposition;
 begin
 GasComp:=HCRatioMoleComposition(atomweightC+atomweightH*HCratio, GasComposition);
 CinMixture:=GasComp[gtCO2]+GasComp[gtCO]+GasComp[gtCH4]+2*GasComp[gtC2H6]
 +2*GasComp[gtC2H4]+3*GasComp[gtC3H8]+4*GasComp[gtC4H10]+GasComp[gtCxHy];
 HinMixture:=2*GasComp[gtH2Og]+2*GasComp[gtH2]+GasComp[gtH]+GasComp[gtOH]
 +4*GasComp[gtCH4]+6*GasComp[gtC2H6]+4*GasComp[gtC2H4]
 +8*GasComp[gtC3H8]+10*GasComp[gtC4H10]+HCratio*GasComp[gtCxHy];
 OinMixture:=2*GasComp[gtCO2]+GasComp[gtCO]+2*GasComp[gtO2]+GasComp[gtOH]+GasComp[gtO]+
 +GasComp[gtH2Og]+GasComp[gtNO]+GasComp[gtN2O];
 O2Needed:=CinMixture+0.25*HinMixture;
 O2Available:=0.5*OinMixture;
 Result:=O2Needed/O2Available;
 end;

CombEquilibrium (GSPglobal.Pas)
//The aim of this function is to find the equilibrium composition at a given
//temperature and (static) pressure. Equilibrium is determined for (CO2, CO, O2,
//(Ar,) H2O(g), H2, O, H, OH, NO, N2O, N2). It is only valid at temperatures at
//which liquid water is negligible. In the equilibrium composition, hydrocarbons
//are assumed not to be present, which is the case until very rich
//(E.R. > 3) mixtures.
//To find the equilibrium composition, an initial guess is made of a
//concentration. Because the number of unknowns (concentrations) is equal to the
//number of equations, the other unknowns can be calculated for this guess, and
//a new value is found for the guessed concentration. The correct concentration
//is found if the new value for the concentration is equal to the guessed one.
//Therefore, the deviation of the new value from the guessed one is used to find
//the correct concentration and therefore the correct the equilibrium
//composition.
//The choice of the concentration to be guessed is determined by the fact that
//it must be a non-zero (not below 1e-15) concentration under all circumstances,
//otherwise, the equations can't be solved. Species containing C and H-atoms
//can't be chosen, because it must be possible to burn hydrogen in air (not
//containing carbondioxide) and to burn fuels only containing carbon (e.g. pure
//carbonmonoxide). In those cases, the concentration would be zero. Taking
//nitrogen or argon leads to problems if not air is used, but pure oxygen.
//Therefore, the most logical concentration is the O2-concentration, because it
//will allways be present in gas turbine combustion processes. However, problems
//will be encountered when the O2 concentration becomes smaller than 1e-15. This
//problem could be solved by increasing the accuracy of the Delphi-calculations.
//However, this will take more calculation time, and O2-concentrations lower
//than 1e-15 usually occur only for (very) rich mixtures (E.R.> about 1.7) or
//low temperatures, which are not likely to occur in gas turbine combustion.
function CombEquilibrium(const T, p, HCRatio: double;
 const StartGasComp:TGasComposition;
 var Gascompositionv,
 Gascompositionm:TGasComposition): boolean;

 const InitStepSizeFactor = 0.1;
 var
 nO2infirstOld, nO2insecond, nO2outfirst, nO2infirst,
 nO2outsecond, nO2guess,
 X, notchanged, CinMixture, HinMixture, OinMixture,
 NinMixture, derivative, pbar, nO2new,
 nO, nH, nOH,
 nNO, nN2O, nN2, nCO2, nCO, nH2Og, nH2, N1,
 N2, CO2eq, H2Oeq, OHeq, Oeq, Heq, NOeq, N2Oeq :double;
 StepSizeFactor :double;
 i,j :integer;
 GCmole :TgasComposition;

NLR-TR-2014-150

 145

 //This (sub)function determines the composition and total number of moles for
 //a given pressure and a guessed O2 starting number of moles (nO2in) as well
 //as a guessed total number of moles.
 function GetTotalMoles(const Nold, nO2in: Double; var Nresult : Double): Boolean;
 var
 CO2quotient, H2Oquotient, OHquotient, Hquotient, Oquotient,
 NOquotient, N2Oquotient : Double;
 begin
 Result:=false;
 if nO2in<0 then
 begin
 MessageDlg('nO2in<0 in'+#13+'in combustion model',mtError, [mbOK], 0);
 Exit;
 end;
 CO2quotient:=sqrt(nO2in*pbar/Nold)/CO2eq; //=nCO2/nCO (n=number
 H2Oquotient:=sqrt(nO2in*pbar/Nold)/H2Oeq; //=nH2O/nH2 of moles)
 Oquotient:=sqrt(Nold/pbar)*Oeq; //=nO/sqrt(nO2)
 Hquotient:=sqrt(Nold/pbar)*Heq; //=nH/sqrt(nH2)
 OHquotient:=pbar/Nold*OHeq; //=nOH/(nO*nH)
 NOquotient:=sqrt(pbar/Nold)*NOeq; //=nNO/(nO*sqrt(nN2))
 N2Oquotient:=pbar/Nold*N2Oeq; //=nN2O/(nO*nN2)
 nCO:=CinMixture/(1+CO2quotient);
 nCO2:=CinMixture-nCO;
 nN2:=sqr((-(sqrt(nO2in)*Oquotient*NOquotient)
 +sqrt(nO2in*sqr(Oquotient*NOquotient)
 +4*NinMixture*(2+2*sqrt(nO2in)*Oquotient*N2Oquotient)))
 /(4+4*sqrt(nO2in)*Oquotient*N2Oquotient));
 nN2O:=nN2*N2Oquotient*sqrt(nO2in)*Oquotient;
 nNO:=sqrt(nN2*nO2in)*Oquotient*NOquotient;
 nH2:=sqr((-(Hquotient+Hquotient*sqrt(nO2in)*Oquotient*OHquotient)
 +sqrt(sqr(Hquotient+Hquotient*sqrt(nO2in)*Oquotient*OHquotient)
 +4*(2+2*H2Oquotient)*HinMixture))/(4+4*H2Oquotient));
 nH:=sqrt(nH2)*Hquotient;
 nO:=sqrt(nO2in)*Oquotient;
 nOH:=nO*nH*OHquotient;
 nH2Og:=nH2*H2Oquotient;
 Nresult:=notchanged+nCO2+nCO+nO2in+nH2Og+nH2+nO+nH+nOH+nNO+nN2O+nN2;
 Result:=true;
 end;

 begin
 Result:=false;
 StepSizeFactor:=InitStepSizeFactor;
 nO2guess:=1.0;
 pbar:=p/100000; //Procedure uses pressure in (bar)
 N2:=1;
 GCmole:=HCratioMoleComposition(atomweightC+atomweightH*HCratio, StartGasComp);
 if GCmole[gtH2Ol]>NearlyZero then //All liquid water is evaporated.
 begin
 GCmole[gtH2Og]:=GCmole[gtH2Og]+GCmole[gtH2Ol];
 GCmole[gtH2Ol]:=0;
 end;

 //Determine the amount of C, H, O and N and notchanging species (only Ar).
 notchanged:=GCmole[gtAr];
 CinMixture:=GCmole[gtCO2]+GCmole[gtCO]+GCmole[gtCH4]+2*GCmole[gtC2H6]
 +2*GCmole[gtC2H4]+3*GCmole[gtC3H8]+4*GCmole[gtC4H10]+GCmole[gtCxHy];
 HinMixture:=2*GCmole[gtH2Og]+2*GCmole[gtH2]+GCmole[gtH]+GCmole[gtOH]
 +4*GCmole[gtCH4]+6*GCmole[gtC2H6]+4*GCmole[gtC2H4]
 +8*GCmole[gtC3H8]+10*GCmole[gtC4H10]+HCratio*GCmole[gtCxHy];
 OinMixture:=2*GCmole[gtCO2]+GCmole[gtCO]+2*GCmole[gtO2]+GCmole[gtOH]+GCmole[gtO]+
 +GCmole[gtH2Og]+GCmole[gtNO]+GCmole[gtN2O];
 NinMixture:=2*GCmole[gtN2]+GCmole[gtNO]+2*GCmole[gtN2O];

 // Calculation of equilibrium constants:
 if T>1000 then //and T<6000 (K)
 begin
 CO2eq:=CalcEqConst(T,Pol2CO2);
 H2Oeq:=CalcEqConst(T,Pol2H2O);
 Oeq:=CalcEqConst(T,Pol2O);

NLR-TR-2014-150

 146

 Heq:=CalcEqConst(T,Pol2H);
 OHeq:=CalcEqConst(T,Pol2OH);
 NOeq:=CalcEqConst(T,Pol2NO);
 N2Oeq:=CalcEqConst(T,Pol2N2O);
 end
 else //T between 200 (K) (647.29 (K)) and 1000 (K)
 begin
 CO2eq:=CalcEqConst(T,Pol1CO2);
 H2Oeq:=CalcEqConst(T,Pol1H2O);
 Oeq:=CalcEqConst(T,Pol1O);
 Heq:=CalcEqConst(T,Pol1H);
 OHeq:=CalcEqConst(T,Pol1OH);
 NOeq:=CalcEqConst(T,Pol1NO);
 N2Oeq:=CalcEqConst(T,Pol1N2O);
 end;

 //First a search is undertaken for a nO2infirst that gives a realistic
 //nO2new-value (in other words a realistic guess for the O2 concentration).
 nO2infirst:=nO2guess;
 i:=0;
 repeat //Iterate until the total number of moles (N) has converged.
 inc(i);
 if not GetTotalMoles(N2, nO2infirst, N1) then Exit;
 if not GetTotalMoles(N1, nO2infirst, N2) then Exit;
 nO2outfirst:=0.5*(OinMixture-2*nCO2-nCO-nH2Og-nOH-nO-nN2O-nNO);
 until ((abs(N2-N1)/N1)<1e-8) or (i>30);
// until (((N2-N1)/N1)<0.01) or (i>30);
 if (i>30) then
 begin
 MessageDlg('TotalMoles 1st level iteration not converging',mtError,[mbOK],0);
 Exit;
 end;
 i:=0;
 repeat //Iteration to find reasonable starting value for O2 concentration:
 inc(i);
 nO2insecond:=0.1*nO2infirst;
 j:=0;
 repeat //Iterate until the total number of moles (N) has converged.
 inc(j);
 if not GetTotalMoles(N2, nO2insecond, N1) then Exit;
 if not GetTotalMoles(N1, nO2insecond, N2) then Exit;
 nO2outsecond:=0.5*(OinMixture-2*nCO2-nCO-nH2Og-nOH-nO-nN2O-nNO);
 until ((abs(N2-N1)/N1)<1e-8) or (j>30);
// until (((N2-N1)/N1)<0.01) or (j>30);
 if (j>30) then
 begin
 MessageDlg('TotalMoles 2nd level iteration not converging',mtError,[mbOK],0);
 Exit;
 end;

 derivative:=(nO2outsecond-nO2outfirst)/(nO2insecond-nO2infirst);

 //nO2new is the guess of the correct O2 concentration that is found by
 //linearisation. As long as it is negative, the O2 guess is too big. Smaller
 //O2 guesses are tried to find a good starting value for the O2 guess.
 nO2new:=(nO2outfirst-nO2infirst*derivative)/(1-derivative);
{ if nO2new<0 then
 begin
 nO2infirst:=nO2insecond;
 nO2outfirst:=nO2outsecond;
 end; }
 if nO2new<nO2insecond then //Decrease O2 concentration guess to find
 begin //reasonable estimate.
 nO2infirst:=nO2insecond;
 nO2outfirst:=nO2outsecond;
 end;
// until (nO2new>0) or (i>30);
 until (nO2new>nO2insecond) or (i>30);
 if (nO2infirst<NearlyZero) or (i>30) then //The O2 concentration is too small
 begin //Exit procedure.
// MessageDlg('O2 concentration too small',mtError,[mbOK],0);

NLR-TR-2014-150

 147

 Exit; // exit without reporting error; leave this to calling procedure
 end;
 nO2infirst:=nO2new; //End of first part of procedure CombEquilibrium.
 nO2infirstOld:=nO2insecond; //First guess for O2-concentration is found.

 i:=0;
 repeat //Main part of the procedure determining the various concentrations.
 //The same equations as in the upper part of this function are used. If
 //a negative O2 concentration guess is found, a smaller O2 guess is
 //applied until a positive O2 concentration guess is found.
 inc(i);
 j:=0;
 repeat //Iterate until the total number of moles (N) has converged.
 inc(j);
 if not GetTotalMoles(N2, nO2infirst, N1) then Exit;
 if not GetTotalMoles(N1, nO2infirst, N2) then Exit;
 nO2outfirst:=0.5*(OinMixture-2*nCO2-nCO-nH2Og-nOH-nO-nN2O-nNO);
 until ((abs(N2-N1)/N1)<1e-8) or (j>30);
// until (((N2-N1)/N1)<0.01) or (j>30);
 if (j>30) then
 begin
 MessageDlg('TotalMoles 2nd level iteration not converging',mtError,[mbOK],0);
 Exit;
 end;

// new WV 26-8-1998 exp(.... term too long)... cannot be evaluated right ????
{old if nO2infirst>nO2infirstOld then
 nO2insecond:=exp(abs(StepSizeFactor*(nO2infirst-nO2infirstOld)
 /(nO2infirst)))*nO2infirst
 else nO2insecond:=exp(abs(StepSizeFactor*(nO2infirst-nO2infirstOld)
 /(nO2infirstOld)))*nO2infirst;}
//new : evaluate expression in two steps
 if nO2infirst>nO2infirstOld then
 X:=StepSizeFactor*(nO2infirst-nO2infirstOld)/(nO2infirst)
 else X:=StepSizeFactor*(nO2infirst-nO2infirstOld)/(nO2infirstOld);
 nO2insecond:=exp(abs(X))*nO2infirst;

 j:=0;
 repeat //Iterate until total number of moles (N) has converged.
 inc(j);

//end new 31-7-1998
 if not GetTotalMoles(N2, nO2insecond, N1) then Exit;
 if not GetTotalMoles(N1, nO2insecond, N2) then Exit;
 nO2outsecond:=0.5*(OinMixture-2*nCO2-nCO-nH2Og-nOH-nO-nN2O-nNO);
 until ((abs(N2-N1)/N1)<1e-8) or (j>30);
// until (((N2-N1)/N1)<0.01) or (j>30);
 if (j>30) then
 begin
 MessageDlg('TotalMoles 2nd level iteration not converging',mtError,[mbOK],0);
 Exit;
 end;

 derivative:=(nO2outsecond-nO2outfirst)/(nO2insecond-nO2infirst);
 nO2new:=(nO2outfirst-nO2infirst*derivative)/(1-derivative);//New start value
 if nO2new<NearlyZero then

// StepSizeFactor:=StepSizeFactor*5
 begin
 //Decrease O2 estimate to find positive new O2 guess
 nO2infirstOld:=nO2infirst; // volgens mail van Steven 2-9-1998
 nO2infirst:=0.85*nO2infirst; // dit werkt dus met LM2500f !! (2-9-1998)
// MessageDlg('Negative O2 concentration in CombEquilibrium',mtError,[mbOK],0);
// Exit;
 end
 else
 begin
// new WV 27-8-1998
// StepSizeFactor:=InitStepSizeFactor; // reset
 nO2infirstOld:=nO2infirst;
 nO2infirst:=nO2new;

NLR-TR-2014-150

 148

 end;

 until (abs((nO2infirstOld-nO2infirst)/nO2infirst)<0.00001) or (i>40);
 if (i>40) then //To save time, the above mentioned accuracy can be lowered.
 begin
 MessageDlg('No convergence in composition-iteration',mtError,[mbOK],0);
 Exit;
 end;

 //Calculation of new fractions:
 Gascompositionv[gtCO2]:=nCO2/N2;
 Gascompositionv[gtCO]:=nCO/N2;
 Gascompositionv[gtO2]:=nO2new/N2;
 Gascompositionv[gtAr]:=GCmole[gtAr]/N2;
 Gascompositionv[gtH2Og]:=nH2Og/N2;
 Gascompositionv[gtH2Ol]:=0;
 Gascompositionv[gtH2]:=nH2/N2;
 Gascompositionv[gtCH4]:=0;
 Gascompositionv[gtC2H6]:=0;
 Gascompositionv[gtC2H4]:=0;
 Gascompositionv[gtC3H8]:=0;
 Gascompositionv[gtC4H10]:=0;
 Gascompositionv[gtO]:=nO/N2;
 Gascompositionv[gtH]:=nH/N2;
 Gascompositionv[gtOH]:=nOH/N2;
 if NinMixture=0 then //Because of very small numerical mistakes, the concen-
 begin //trations of N-containing species could be non-zero.
 Gascompositionv[gtNO]:=0;
 Gascompositionv[gtN2O]:=0;
 Gascompositionv[gtN2]:=0;
 end
 else
 begin
 Gascompositionv[gtNO]:=nNO/N2;
 Gascompositionv[gtN2O]:=nN2O/N2;
 Gascompositionv[gtN2]:=nN2/N2;
 end;
 Gascompositionv[gtCxHy]:=0;
 Gascompositionm:=MassComposition(Gascompositionv);
 Result:=true;
 end; {end CombEquilibrium}

CombustionEnthalpy (GSPglobal.Pas)
//This function calculates the heat of reaction of a combustion reaction (change
//in formation enthalpies due to the reaction).
function CombustionEnthalpy(const Wfuel, Woxid : Double;
 const FuelComp,OxidComp,ProdComp:TGasComposition
): Double;
 begin

 Result:= Wfuel*FormationEnthalpy(FuelComp)
 +Woxid*FormationEnthalpy(OxidComp)
 -(Wfuel+Woxid)*FormationEnthalpy(ProdComp);
 end;

Dissociation (GSPglobal.Pas)
//This function determines the equilibrium composition at a given temperature,
//just like the above function CombEquilibrium. Only here, the concentrations of
//O, H and OH are assumed negligible, which is a good approximation for
//temperatures lower than 2200 (K). Further, all Nitrogen containing species
//remain frozen. In other words, only dissociation of CO2 and H2O to CO, H2 and
//O2 is calculated. All water present is assumed to evaporate: if dissociation
//becomes important (T>1800 (K)), the temperature is higher than the critical
//temperature of H2O. Here, just like in CombEquilibrium the O2 concentration
//is guessed, a new value for the O2 concentration is found and a new guess is
//made until the correct O2 concentration (and thus the complete composition) is
//found.

NLR-TR-2014-150

 149

function Dissociation(var Gascond : TGasConditions) : Boolean;
 var
 notchanged, CinMixture, HinMixture, OinMixture, derivative,
 CO2quotient, H2Oquotient, nO2new, nO2new1, nO2infirst,
 nO2insecond, nO2outfirst, nO2outsecond, nO2guess,
 nCO2, nCO, nH2Og, nH2, N, CO2eq, H2Oeq, pbar :double;
 i,j :integer;
 GCmole :TgasComposition;

 //This (sub)procedure calculates the O2 concentration from the conservation
 //of O-atoms using a guess for O2. Unlike in CombEquilibrium subfunction
 //GetTotalMoles the total number of moles is directly known if the O2 guess is
 //known.
 procedure GetConcentration(const nO2in : Double; var nO2out : Double);
 begin
 N:=notchanged+CinMixture+0.5*HinMixture+nO2in;
 CO2quotient:=sqrt(nO2in*pbar/N)/CO2eq; //=nCO2/nCO (n = number
 H2Oquotient:=sqrt(nO2in*pbar/N)/H2Oeq; //=nH2O/nH2 of moles)
 nCO:=CinMixture/(1+CO2quotient);
 nCO2:=CinMixture-nCO;
 nH2:=0.5*HinMixture/(1+H2Oquotient);
 nH2Og:=0.5*HinMixture-nH2;
 nO2out:=0.5*OinMixture-nCO2-0.5*nCO-0.5*nH2Og;
// new v.8.0.0.9 WV 20-10-1998 :
// if nO2out<0 then nO2out:=0;
 end;
 begin
 Result:=false;
 nO2guess:=1.0;
 pbar:=Gascond.Pt/100000; //The procedure works with pressures in (bar).
 i:=0;
 j:=0;
 GCmole:=MoleComposition(Gascond.Composition);
 if GCmole[gtH2Ol]>NearlyZero then //Evaporate present water.
 begin
 GCmole[gtH2Og]:=GCmole[gtH2Og]+GCmole[gtH2Ol];
 GCmole[gtH2Ol]:=0;
 end;

 //Calculate amounts of C, H, O and notchanging species present.
 //Allow frozen fractions of NO and N2O !
 notchanged:=GCmole[gtAr]+GCmole[gtNO]+GCmole[gtN2]+GCmole[gtN2O];

 CinMixture:=GCmole[gtCO2]+GCmole[gtCO];
 HinMixture:=2*GCmole[gtH2Og]+2*GCmole[gtH2]+GCMole[gtOH]+GCMole[gtH];
 OinMixture:=2*GCmole[gtCO2]+GCmole[gtCO]+2*GCmole[gtO2]
 +GCmole[gtH2Og]+GCMole[gtOH]+GCMole[gtO];

 //Calculate the equilibrium constants.
 CO2eq:=CalcEqConst(Gascond.Tt,Pol2CO2); //Only temperatures above 1000 (K)!
 H2Oeq:=CalcEqConst(Gascond.Tt,Pol2H2O);

 //Iteration to find reasonable starting value for nO2:
 nO2infirst:=nO2guess;
 GetConcentration(nO2infirst, nO2outfirst);
 repeat //Find for given (first estimate of) nO2: N, nCO2, nCO, nH2O and nH2;
 inc(j);
 nO2insecond:=0.1*nO2infirst;

 GetConcentration(nO2insecond, nO2outsecond);

 derivative:=(nO2outsecond-nO2outfirst)/(nO2insecond-nO2infirst);

 //nO2new is the guess of the correct O2 concentration that is found by
 //linearisation. As long as it is negative, the O2 guess is too big. Smaller
 //O2 guesses are tried to find a good starting value for the O2 guess.
 nO2new:=(nO2outfirst-nO2infirst*derivative)/(1-derivative);
 if nO2new<0 then //Decrease O2 concentration guess to find
 begin //reasonable estimate.
 nO2infirst:=nO2insecond;
 nO2outfirst:=nO2outsecond;

NLR-TR-2014-150

 150

 end;
 until (nO2new>0) or (j>15);
 if (j>15) then //The O2 concentration is too small because of limited
 begin //accuracy. Exit function.
 MessageDlg('O2 concentration too small',mtError,[mbOK],0);
 Exit;
 end;
 nO2infirst:=nO2new;
 nO2new1:=nO2insecond;

 //Main part of the procedure determining the various concentrations. The same
 //formulae as in the above part are used, only now, a negative O2
 //concentration guess will cause failure (see CombEquilibrium for a solution
 //to this problem if thought necessary).
 repeat
 inc(i);
 GetConcentration(nO2infirst, nO2outfirst);

 if nO2new>nO2new1 then
 nO2insecond:=exp(abs((nO2new-nO2new1)/(10*nO2new)))*nO2infirst
 else nO2insecond:=exp(abs((nO2new-nO2new1)/(10*nO2new1)))*nO2infirst;

 GetConcentration(nO2insecond, nO2outsecond);

 derivative:=(nO2outsecond-nO2outfirst)/(nO2insecond-nO2infirst);
 nO2new1:=nO2infirst;
 nO2new:=(nO2outfirst-nO2infirst*derivative)/(1-derivative);
 nO2infirst:=nO2new;
 until (abs((nO2new1-nO2new)/nO2new)<0.00001) or (i>40);
 if (i>40) then
 begin
 MessageDlg('No convergence in composition-iteration',mtError,[mbOK],0);
 Exit;
 end;
 with Gascond do
 begin //Determine equilibrium mole fractions.
 Composition[gtCO2]:=nCO2/N;
 Composition[gtCO]:=nCO/N;
 Composition[gtO2]:=nO2new/N;
 Composition[gtAr]:=GCmole[gtAr]/N;
 Composition[gtH2Og]:=nH2Og/N;
// Composition[gtH2Ol]:=GCmole[gtH2Ol]/N; assumed 0
 Composition[gtH2]:=nH2/N;
// Composition[gtCH4]:=GCmole[gtCH4]/N; assumed 0
// Composition[gtC2H6]:=GCmole[gtC2H6]/N; assumed 0
// Composition[gtC2H4]:=GCmole[gtC2H4]/N; assumed 0
 Composition[gtN2]:=GCmole[gtN2]/N;
 Composition[gtN2O]:=GCmole[gtN2O]/N;
// number of NO unchanged but concentration changed due to change in N = total moles
 Composition[gtNO]:=GCmole[gtNO]/N;
 Composition:=MassComposition(Composition);
 end;
 Result:=true;
 end;

EmissionFormationRate (Combusn.Pas)
//This function is used to find the formation rate (=time derivative) of the
//emissions.
function TCombustor.EmissionFormationRate(const Emission : TEmission;
 const Gasconc: TGasComposition;
 const Ps, Ts, Estimate: double): double;

 const SootDensity = 1800; // (kg/m3)
 var R : Carray9;
 NOEquilibFraction, PartialO2Pressure, x : double;
 begin
 case Emission of
 etNOx : begin //Equation:
 R[1] := 1.8e11*exp(-38367/Ts)*Gasconc[gtO]*Gasconc[gtN2]; //6.3

NLR-TR-2014-150

 151

 R[2] := 1.37e6*Ts*exp(-19239/Ts)*Gasconc[gtNO]*Gasconc[gtO]; //6.4
 R[3] := 8.12e10*exp(-24125/Ts)*Gasconc[gtNO]*Gasconc[gtH]; //6.5
 R[4] := 7.6e10*exp(-7648.9/Ts)*Gasconc[gtN2O]*Gasconc[gtH]; //6.9
 R[5] := 1.0e11*exp(-14190.7/Ts)*Gasconc[gtO]*Gasconc[gtN2O]; //6.7
 R[6] := 1.0e11*exp(-14190.7/Ts)*Gasconc[gtO]*Gasconc[gtN2O]; //6.8

 //Because of the third body in this reaction ('M') (the order of)
 //this reaction is dependent on pressure in a way described by a
 //Lindemann fall-off. Here, Lindemann fall-off is discarded.
 //For pressures lower than 10 (bar), the reaction is assumed to be
 //pressure dependent, for pressures higher than 10 (bar) not.
 if Ps<1000000 then //arbitrary pressure: could be changed
 R[7] := 6.9e20*Power(Ts,-2.5)*exp(-32709.1/Ts)*Gasconc[gtN2O]
 *Gasconc[gtN2]
 else //High pressure assumption
 R[7] := 1.3e8*exp(-29991.7/Ts)*Gasconc[gtN2O]; //Equation 6.6
 //Equation:
 R[8] := 2.78648e11*exp(-30264.6/Ts)*Gasconc[gtN2O]*Gasconc[gtCO];//6.11
 R[9] := 8.439e11*exp(-16118.4/Ts)*Gasconc[gtN2O]*Gasconc[gtH];//6.10
 NOEquilibFraction:=Estimate/Gasconc[gtNO]; //=[NO]/[NO]eq
 Result:=2*(1-sqr(NOEquilibFraction)) //Equation 6.20.
 *(R[1]/(1+NOEquilibFraction*R[1]/(R[2]+R[3]))
 +(R[6]+ (R[8]+R[9])/2/(1+NOEquilibFraction)
 *(1+NOEquilibFraction*R[6]/(R[4]+R[5]+R[7])))
 /(1+(R[6]+R[8]+R[9])/(R[4]+R[5]+R[7])));
 end;
 etCO : begin
 Result:=1.5e4*Power(Ts,1.30)*exp(3200/8.31451/Ts) //Equation 6.24.
 -Gasconc[gtOH](1+Gasconc[gtCO]/Gasconc[gtCO2])
 *(Estimate-Gasconc[gtCO]);
 end;
 etUHC : begin
 case FuelTypeIndex of
 0, 1, 2, 3 : if Ts>555.5556 then Result:= -3.16e11
 *Power(Ps/100000,-0.815)*exp(-12200/Ts)
 *(9e-4*Ts-0.5)*sqrt(Estimate)*Gasconc[gtO2]
 else Result:=0; //Equation 6.26
 4, 6: Result:= -1.585e10*exp(-24355.69/Ts)*Power(Estimate, 0.7)
 *Power(Gasconc[gtO2], 0.8); //Equation 6.27
 5: Result := 0;
 end;
 end;
 etSmoke : begin //The dr/dt (r=radius) of the soot spheres is calculated;
 //the incoming emissionout is the radius at the reactor
 //entrance; gasconc consists of molefractions here.
 PartialO2Pressure:=gasconc[gtO2]*Ps/101325; //Equation:
 R[1] := 20*exp(-15096.5/Ts); //=kA, p20-5 AGARD CP-125 6.32
 R[2] := 4.46e-3*exp(-7648.89/Ts);//=kB, p20-5 AGARD CP-125 6.33
 R[3] := 1.51e5*exp(-48812/Ts); //=kT, p20-6 AGARD CP-125 6.34
 R[4] := 21.3*exp(2063.19/Ts); //=kZ, p20-6 AGARD CP-125 6.35
 x:=1/(1+R[3]/PartialO2Pressure/R[2]); //6.31
 Result:=-12/1800*10*(x*(R[1]*PartialO2Pressure
 /(1+R[4]*PartialO2Pressure))
 +R[2]*PartialO2Pressure*(1-x)); //Equation 6.30
 end;
 end;//end case statement
 end;

EnthalpyChange (GSPglobal.Pas)
//The result of this function is the enthalpy change involved in a temperature
//change of a given specie.
function EnthalpyChange(const T2,T1 :Double; const GP: TGasProperties):Double;
begin
Result:=EnthalpyPerSpecie(T2, GP) - EnthalpyPerSpecie(T1, GP); //Result in [J]!
end;
EnthalpyPerSpecie (GSPglobal.Pas)
//The result of this function is the enthalpy of a specie at a given temperature
//(equation C.25). The absolute value is determined by the fact that at

NLR-TR-2014-150

 152

//T = 298.15 (K) the enthalpy is equal to the formation enthalpy at
//T = 298.15 (K) of the specie.
function EnthalpyPerSpecie(const T :double; const GP: TGasProperties):double;
begin //CoefsChangeTemp is the bordering temperature between the
 //two sets of (NASA) coefficients (here 1000 (K)).
with GP do if T>CoefsChangeTemp then
 Result:=Gasconst/MoleMass*(-Coefs_above1000[1]*IntPower(T,-1)
 +Coefs_above1000[2]*ln(T)
 +Coefs_above1000[3]*T
 +Coefs_above1000[4]/2*IntPower(T,2)
 +Coefs_above1000[5]/3*IntPower(T,3)
 +Coefs_above1000[6]/4*IntPower(T,4)
 +Coefs_above1000[7]/5*IntPower(T,5)
 +Coefs_above1000[8]/6*IntPower(T,6)
 +Coefs_above1000[9])
else
 Result:=Gasconst/MoleMass*(-Coefs_below1000[1]*IntPower(T,-1)
 +Coefs_below1000[2]*ln(T)
 +Coefs_below1000[3]*T
 +Coefs_below1000[4]/2*IntPower(T,2)
 +Coefs_below1000[5]/3*IntPower(T,3)
 +Coefs_below1000[6]/4*IntPower(T,4)
 +Coefs_below1000[7]/5*IntPower(T,5)
 +Coefs_below1000[8]/6*IntPower(T,6)
 +Coefs_below1000[9]);// Result in [J]!
end;

EquilibriumH2O (GSPglobal.Pas)
//The purpose of this function is to calculate the equilibrium between liquid
//and gaseous water. If the temperature is higher than the critical temperature
//of water (647.29 (K)) all the water will be vapour. If the temperature is
//lower, the maximum partial vapour pressure of water is calculated by
//'PmaxH2Ovapour' and compared to the vapour pressure that would exist if all
//the water would be vapour to see if all the water can be vapour. If not, a
//part will be liquid.
function EquilibriumH2O(const T, p: double;
 const GasComp: TGasComposition): TGasComposition;
 var
 H2Ototal, MaxVapourWater : double;
 GCeq : TGasComposition;
 begin
 // initial value
 GCeq:=GasComp;
 if T>TcritH20 then //Above the critical temperature no liquid water.
 begin
 GCeq[gtH2Og]:=GasComp[gtH2Og]+GasComp[gtH2Ol];
 GCeq[gtH2Ol]:=0;
 end
 else
 begin
 //als P in [N/m2] is!!! MaxVap... is ook de maximale molfractie van H2Og
 MaxVapourWater:=PmaxH20vapour(T)/p;
 GCeq:=MoleComposition(GasComp);
 H2Ototal:=GCeq[gtH2Og]+GCeq[gtH2Ol];
 if H2Ototal<=MaxVapourWater then //All the water can be gaseous.
 begin
 GCeq[gtH2Og]:=H2Ototal;
 GCeq[gtH2Ol]:=0;
 end
 else //Not all the water can be gaseous;
 begin //Some liquid water remains present.
 GCeq[gtH2Ol]:=(H2Ototal-MaxVapourWater)/(1-MaxVapourWater);
 GCeq[gtH2Og]:=H2Ototal-GCeq[gtH2Ol];
 end;
 GCeq:=MassComposition(GCeq);
 end;
 Result:=GCeq;
 end;

NLR-TR-2014-150

 153

EquilibriumReactor (Combusn.Pas)
//The purpose of this function is to calculate the equilibrium temperature and
//emission levels for a reactor. The assumption made is that only one fuel
//composition is used throughout the combustion chamber. If this is not the
//case, some lines have to be changed.
function TCombustor.EquilibriumReactor(const Mode : TCalcMode;
 //Only used for calculation of eta.
 const Detail : TDetailLevel;
 const TheVspecifier, IntersectionNr: integer;
 var Flowin, Fuelin, Oxidin, Waterin, Flowout: TGasConditions;
 const L, dNOdtin, NOin, dCOdtin, COin, dUHCdtin, UHCin,
 NumberOfSmokeSpheresin, SootSphereRadiusin, dSootSphereRadiusdtin,
 WTotalFuel, WTotalOxid, WTotalWater: double;
 var dNOdtout, NOout, NOeqppm, dCOdtout, COout, COeqppm, O2eqppm,
 dUHCdtout, UHCout,
 NumberOfSmokeSpheresout, SootSphereRadiusout, dSootSphereRadiusdtout,
 molew_div_rho, ResTime: Double): Boolean;

 var
 DeltaNO, molweight, Rho, dNOdtiter, NOpandf, FuelFormationEnthalpy,
 NOxTfactor, COTfactor, UHCTfactor, SmokeTfactor, Dummy,
 NOxTemperature, COTemperature, UHCTemperature, SmokeTemperature,
 FuelReactantEnthalpy, FormEnthalpyWithoutFlowout,
 StoichFuelFlowPerKgOxid, SmokeProd, Rsootsphereinit,UHCProduction,
 Hreactant, Hformation, Hneeded, Havail, Herror, Tcorrection, err, dir, Titer,
 NOoutiter, COoutiter, EqRatio, CxHyMoleMass,
 COproduction, PromptNO, FuelNO, dNOdtout1, dNOdtout2,
 dCOdtout1, dCOdtout2 : Double;
 ig : TGas;
 i : integer;
 CompositionWithoutFuel,LocalComposition,
 Gasconc, Gascompnewv, StartGasComp : TGasComposition;
 Inmix : TGasConditions;
 ConvergedAllowed, CompositionFound : Boolean;

 begin
 Result:=false;

 //First a guess of the composition is made by mixing (no fuel added) or by
 //application of ProdFromReact. Using this new composition, a (total)
 //equilibrium temperature guess is produced.
 for ig:=Low(ig) to High(ig) do
 Inmix.Composition[ig]:=(Flowin.W*Flowin.Composition[ig]
 +Oxidin.W*Oxidin.Composition[ig]
 +Waterin.W*Waterin.Composition[ig])
 /(Flowin.W+Oxidin.W+Waterin.W);
 Inmix.W:=Flowin.W+Oxidin.W+Waterin.W;
 StartGasComp:=MixGascomposition(Inmix.Composition, Fuelin.Composition,
 Inmix.W , Fuelin.W);

 // Estimate Flowout.Tt based on combustion without dissociation---------------
 // and try to find estimate of combustor products composition.
 if Fuelin.W<NearlyZero then
 begin
 Flowout.Composition:=Inmix.Composition;
 Compositionfound:=true;
 end
 else
 CompositionFound:=ProdFromReact(Fuelin.W, Inmix.W, HCRatio,
 Fuelin.Composition,Inmix.Composition, Flowout.Composition);
 if Compositionfound then
 begin
 Flowout.W:=Inmix.W+Fuelin.W;
 Hreactant:= Flowin.W*RH(Flowin.Composition,Flowin.Tt)
 +Oxidin.W*RH(Oxidin.Composition,Oxidin.Tt)
 +Waterin.W*RH(Waterin.Composition,Waterin.Tt)
 +FuelReactantEnthalpyPerKg*FuelIn.W;
 FormEnthalpyWithoutFlowout:=Flowin.W*FormationEnthalpy(Flowin.Composition)
 +FuelFormationEnthalpyPerKg*Fuelin.W
 +Oxidin.W*FormationEnthalpy(Oxidin.Composition)

NLR-TR-2014-150

 154

 +Waterin.W*FormationEnthalpy(Waterin.Composition);
 Hformation:=FormEnthalpyWithoutFlowout
 -Flowout.W*FormationEnthalpy(Flowout.Composition);
 Havail:=Hreactant+Hformation;

 i:=0;
 Titer:=2000;
 repeat //Solve for correct temperature.
 Hneeded:=(Flowout.W)*RH(Flowout.Composition,Titer);
 Herror:=Havail-Hneeded;
 Tcorrection:=Herror/FCp(Titer,Flowout.Composition)/(Flowout.W); //[unit [J]
 Titer:=Titer+Tcorrection;
 inc(i);
 until (abs(Tcorrection)< 10) or (i>16);
 if (i>16) then Flowout.Tt:=2000 else Flowout.Tt:=Titer;
 end
 else//Compostion not found in ProdFromReact (probably due to overrich mixture)
 Flowout.Tt:=2000; //Try with rough estimate
 // end estimate Flowout.Tt--

 //Second the equilibrium temperature and composition are calculated using
 //CombEquilibrium and one of the functions to calculate static temperature and
 //pressure.

 ResetAFQmem;
 i:=0;
 repeat
 with Flowout do if (i>0) then //In the first loop the composition is calcu-
 //lated using total temperature and pressure.
 begin
 ConvergedAllowed:=true;

 //The old composition is used, so there should be an extra
 //'repeat-until'-loop here, but it is assumed that in the last loops used
 //to find the temperature, the composition is almost constant.
 if Mode=cmDesign then //Calculate constant station cross flow area:
 begin
 case TheVspecifier of
 //0: Flow area Specified, A = column 1
 0 : ; // A already assigned A:=ReactorGrid.DValues[1,InterSectionNr+1];
 //1: Mach number Specified , calculate A (=Reactorgrid column 1)
 1 : if not GetStaticFromM(Mach, Pt, Tt, W, Composition, Ps, Ts, V,
 A) then Exit;
 //2: Flow speed (V) Specified, calculate A (=Reactorgrid column 1)
 2 : if not GetStaticFromV(V, Pt, Tt, W, Composition, Ps, Ts, Mach,
 A) then Exit;
 end;
 ReactorGrid.DValues[1,InterSectionNr+1]:=A;
 end
 else //Set A to Reactorgrid column 1 as calulated in Design point
 A:=ReactorGrid.DValues[1,InterSectionNr+1];
 //Now get static conditions from A and W, Pt, Tt:
 if not GetStatic(W, Pt, Tt, A, Composition, Ps, Ts, Mach, V,
 'Combustion reactor') then Exit;
 // new v8.1 1-9-1998 Combequilibrium only if Wf>0 !,
 //otherwise freeze composition
 if Wf>NearlyZero then
 begin
 if not CombEquilibrium(Ts, Ps, HCRatio, StartGasComp,Gascompnewv,
 Composition) then
 begin //Here, an attempt is made to remedy the bad convergence of
 //CombEquilibrium at low temperatures and rich mixtures
//old if not ProdFromReact(1, 0, CxHyMoleMass,StartGasComp, Air,
 //Composition) then
//new 20-10-1998
 if not ProdFromReact(1, 0, HCratio,StartGasComp, Air, Composition) then
 begin
 MessageDlg('No convergence in Equilibrium Reactor',mtError, [mbOK], 0);
 Exit;
 end;
 Gascompnewv:=MoleComposition(Composition);

NLR-TR-2014-150

 155

 ConvergedAllowed:=false; //Because the composition found with
 end; //ProdfromReact is just an estimate for the
 //composition, the loop is not allowed to be converged.
 end;// new v8.1 1-9-1998 leave composition at StartComposition set at i=0
 end
 else //i=0: first iteration loop
 begin
 ConvergedAllowed:=false;
// new v8.1 1-9-1998 Combequilibrium only if Wf>0 !, otherwise freeze composition
 if Wf>NearlyZero then
 begin
 if not CombEquilibrium(Tt,Pt,HCRatio,StartGasComp,Gascompnewv,
 Composition) then
 begin
//old ProdFromReact(1, 0, CxHyMoleMass,StartGasComp, Air, Composition);
//new 20-10-1998
 if not ProdFromReact(1, 0, HCratio,StartGasComp, Air, Composition) then
 Gascompnewv:=MoleComposition(Composition);
 end;
 end
 else
 begin
// new v8.1 1-9-1998 Combequilibrium only if Wf>0 !, otherwise freeze composition
 Composition:=StartGasComp;
 Gascompnewv:=MoleComposition(Composition);
 end
 end;

// new v8.1 1-9-1998 Combequilibrium only if Wf>0 !, otherwise freeze composition
 if Wf>NearlyZero then
 begin
 //Combustion efficiency only affects heat release (not gas compositions
 //yet) at this stage.
 if ModelOpt.ItemIndex=1 then //Recalculate ETA based on Out1.Tt
 begin //Read combustion efficiency map:
 //new 8, old if not (Map as Map2in_1out).Out1(Titer-In1.Tt,In1.Delta,
 if not (Map as Map2in_1out).Out1(FlowOut.Tt-FlowIn.Tt,FlowIn.Delta,
 (Self.Owner as TGSPcomp).CompIDstr+' ETA comb. map', ETAmap) then Exit;
 if Mode=cmDesign then SFeta:=ETAdes.Value/ETAmap;
 ETA:=SFeta*ETAmap;
 end;
 Hformation:=ETA*(FormEnthalpyWithoutFlowout
 -Flowout.W*FormationEnthalpy(Flowout.Composition));
 Havail:=Hreactant+Hformation; //Eventually apply heat loss here.
 with Flowout do Hneeded:=W*RH(Composition,Tt);
 err:=(Havail-Hneeded)/abs(Havail);

 //In case the error is small in the first step (i=0), the new temperature
 //Titer, given by AFQuir will be far to small if 'dir:=err' is used.
 if i>0 then dir:=err
 else dir:=0.95;
 AFQcode:=AFQUIR(Flowout.Tt,err,0,0.001,dir,40,
 'Reactor equilibrium iteration in'+#13+
 (Owner as TGSPcomp).CompIDstr,Titer);
 //old if Titer<200 then Titer:=220; //If T<647.29, liquid water can exist,
 if Titer<In1.Tt then Titer:=In1.Tt; //which is not accounted for in the
 if Titer>6000 then Titer:=5000; //CombEquilibrium procedure.
 Flowout.Tt:=Titer;
 end
 else // new v8.1 1-9-1998 Combequilibrium only if Wf>0 !, otherwise freeze
 //composition
 begin // leave Flowout.Tt at value determined in Estimate Flowout section
 AFQcode:=2; // quit iteration when Wf=0 above
 end;
 inc(i);
 until ((AFQcode>1) and (ConvergedAllowed))
 or (i>100);
 if (AFQcode=3) then Exit; //Error in AFQUIR iteration
 if i>100 then //CombEquilibrium not converging
 begin
 MessageDlg('Comb Equilibrium procedure not converging'+#13+

NLR-TR-2014-150

 156

 (Owner as TGSPcomp).CompIDstr,mtError, [mbOK], 0);
 Exit;
 end;
 NOeqppm:=GasCompnewv[gtNO]*1e+6;
 O2eqppm:=GasCompnewv[gtO2]*1e+6;
 COeqppm:=GasCompnewv[gtCO]*1e+6;

 if Detail=dlHigh then //Continue to calculate emissions
 begin //(only for MultiReactorLoop).
 molweight:=0; //Conversion of molefractions to kmole/m3.
 for ig:=Low(ig) to High(ig) do
 molweight:=molweight+Gascompnewv[ig]*GasProperties[ig].MoleMass;
 with Flowout do Rho:=Ps/FR(Composition)/Ts;

 //For conversion from kMole/m3 to ppm (volume):
 molew_div_rho:=molweight/Rho;

 for ig:=Low(ig) to High(ig) do Gasconc[ig]:=Gascompnewv[ig]*Rho/molweight;

 //Calculate temperatures using tuning factors.
 NOxTfactor:=ReactorGrid.Dvalues[8,InterSectionNr+1];
 COTfactor:=ReactorGrid.Dvalues[9,InterSectionNr+1];
 UHCTfactor:=ReactorGrid.Dvalues[10,InterSectionNr+1];
 SmokeTfactor:=ReactorGrid.Dvalues[11,InterSectionNr+1];

 NOxTemperature :=Oxidin.Tt+NOxTfactor*(Flowout.Ts-Oxidin.Tt);
 COTemperature :=Oxidin.Tt+COTfactor*(Flowout.Ts-Oxidin.Tt);
 UHCTemperature:=Oxidin.Tt+UHCTfactor*(Flowout.Ts-Oxidin.Tt);
 SmokeTemperature:=Oxidin.Tt+SmokeTfactor*(Flowout.Ts-Oxidin.Tt);

 //Convert user inteface nanometers to meters:
 Rsootsphereinit:=ReactorGrid.DValues[12,InterSectionNr+1]*1.0e-9;

 with FlowOut do if IntersectionNr>0 then
 begin
 ResTime:=2*L/(Flowin.V+Flowout.V);
 if Fuelin.W>NearlyZero then //Flame in combustion zone
 begin //WTotalWater is what has entered UNTIL this reactor
 CompositionWithoutFuel:=MixGasComposition(Waterin.Composition,
 Oxidin.Composition, WTotalWater, WTotalOxid);
 if not StoichFuelFlow(Fuelin.Composition, CompositionWithoutFuel, HCratio,
 StoichFuelFlowPerKgOxid) then
 begin //Phi, eq. ratio can't be calculated:
 //use chemical eq. ratio as approximation.
 LocalComposition:=MixGasComposition(Fuelin.Composition,
 CompositionWithoutFuel,
 WTotalFuel, WTotalWater+WTotalOxid);
 EqRatio:=ChemicalEqRatio(LocalComposition, HCRatio);
 end
 else //Calculate phi, eq. ratio (fuel/oxid/(fuel/oxid)stoich).
 EqRatio:=(WTotalFuel/(WTotalOxid+WTotalWater))/StoichFuelFlowPerKgOxid;

 if not FPromptNO(Flowin, Fuelin, Oxidin, Waterin, EqRatio,
 Ps, A, PromptNO) then exit;
 if not FFuelNO(Flowin.W, Fuelin.W, Oxidin.W, Waterin.W, molweight,
 FuelNO) then exit;
 if not FCORise(Fuelin.Composition, Composition, Rho, FuelIn.W, W,
 COproduction)
 then exit; //COproduction is in kmol/m3

 //Try smoke production with equivalence ratio for the moment;
 //that enables a more honest comparison between low calorific
 //and other fuels and reduces the situation to air as oxid.
 if not FSmokeProduction(EqRatio, WTotalOxid, Ts, HCratio, Ps,
 Rsootsphereinit, SmokeProd) then exit;
 if not FUHCProduction(Fuelin.W, Rho, Flowout.W, Fuelin.Composition,
 UHCProduction) then exit;

 //Conversion from mole fraction to kmol/m3. The amount of promptNO is
 //multiplied with the fraction that the locally inserted fuel is of
 //total fuel inserted sofar. Otherwise very small amounts of added fuel

NLR-TR-2014-150

 157

 //could result in high amounts of prompt NOx, which is not realistic.
 NOpandf:=(PromptNO*Fuelin.W/WTotalFuel+FuelNO)*Rho/molweight
 +Oxidin.Composition[gtNO]*Oxidin.W/Flowout.W
 *Rho/GasProperties[gtNO].Molemass;
 end
 else //No flame in combustion zone
 begin
 NOpandf:=0+Oxidin.Composition[gtNO]*Oxidin.W/Flowout.W
 *Rho/GasProperties[gtNO].Molemass;
 //=NO prompt and fuel (=0) and NO coming in from cooling oxid.

 COproduction:=0;
 SmokeProd:=0;
 UHCProduction:=0;
 end;

 //Calculate NO emission and dNOdt at the outlet of the combustion zone
 if not FindExitEmissions(etNOx,Gasconc,NOin,dNOdtin,NOpandf,ResTime,
 Ps,NOxTemperature,1e-10,dNOdtout, NOout) then Exit;

 //Calculate CO and dCOdt at the outlet of the combustion zone
 if not FindExitEmissions(etCO,Gasconc,COin,dCOdtin,COproduction,ResTime,Ps,
 COTemperature,1e-10, dCOdtout, COout) then Exit;

 //Compare calculated CO with the local equilibrium CO; if the equilibrium
 //amount is higher, the equilibrium values are used, assuming that in that
 //case, there was time enough to reach equilibrium.
 if (COout<Gasconc[gtCO]) then
 begin
 COout:=Gasconc[gtCO];
 dCOdtout:=EmissionFormationRate(etCO, Gasconc, Ps, Ts, COout);
 end;

 //Calculate SootSphereRadiusout and NumberOfSmokeSpheresout at the outlet
 //of the combustion zone. Start with the SootSphereRadiusout:
 if not FindExitEmissions(etSmoke, Gascompnewv, SootSphereRadiusin,
 dSootSphereRadiusdtin, SmokeProd, ResTime, Ps,
 SmokeTemperature, 1e-10, dSootSphereRadiusdtout,
 SootSphereRadiusout) then exit;

 if (SootSphereRadiusout<NearlyZero) then //No soot left.
 NumberOfSmokeSpheresout:=0
 else NumberofSmokeSpheresout:=NumberOfSmokeSpheresin;
 if (SmokeProd>NearlyZero) then //A new NumberOfSmokeSpheresout and
 begin //SootsphereRadiusout are calculated.
 SootSphereRadiusout:=NumberOfSmokeSpheresout*SootSphereRadiusout
 +SmokeProd*Rsootsphereinit
 /(NumberOfSmokeSpheresout+SmokeProd);
 NumberOfSmokeSpheresout:=NumberOfSmokeSpheresout+SmokeProd;
 end;

 //Calculate UHC emission and dUHCdt at the outlet of the combustion zone
 if not FindExitEmissions(etUHC, Gasconc, UHCin, dUHCdtin, UHCProduction,
 ResTime, Ps, UHCTemperature, 1e-10, dUHCdtout,
 UHCout) then exit;
 end
 else //Intersectionnr = 0: (first) flame zone; fuel must be present,
 //otherwise there is no flame; because only the water injected
 //UNTIL the specific zone is used to calculate the local equivalence
 //ratio, water is not important here.
 begin
 if not StoichFuelFlow(Fuelin.Composition, Oxidin.Composition, HCratio,
 StoichFuelFlowPerKgOxid) then
 begin //Phi, eq. ratio can't be calculated:
 //use chemical eq ratio as approximation.
 LocalComposition:=MixGasComposition(Fuelin.Composition, Oxidin.Composition,
 Fuelin.W, Oxidin.W);
 EqRatio:=ChemicalEqRatio(LocalComposition, HCRatio);
 end
 else //Calculate phi, eq. ratio (fuel/oxid/(fuel/oxid)stoich)
 EqRatio:=Fuelin.W/Oxidin.W/StoichFuelFlowPerKgOxid;

NLR-TR-2014-150

 158

 if not FPromptNO(Flowin, Fuelin, Oxidin, Waterin, EqRatio,
 Ps, A, PromptNO) then exit;
 if not FFuelNO(Flowin.W, Fuelin.W, Oxidin.W, Waterin.W, molweight,
 FuelNO) then exit;
 if not FCORise(Fuelin.Composition, Composition, Rho, FuelIn.W, W,
 COproduction) then exit;
 if not FSmokeProduction(EqRatio, WTotalOxid, Ts, HCratio, Ps,
 Rsootsphereinit, SmokeProd) then exit;
 if not FUHCProduction(Fuelin.W, Rho, Flowout.W,
 Fuelin.Composition, UHCProduction) then exit;
 with Flowout do
 begin
 // new v8.1 1-9-1998 first NOout= Oxidin NO; then add Prompt & Fuel NOx:
 NOout:=Oxidin.Composition[gtNO]*Oxidin.W/Flowout.W
 *Rho/GasProperties[gtNO].Molemass;
 if WtotalFuel>NearlyZero then

 //Convert Prompt and Fuel NOx from molefraction to NO (kmole/m3).
 NOout:=NOout + (PromptNO*Fuelin.W/WTotalFuel+FuelNO)*Rho/molweight;

 dNOdtout:=EmissionFormationRate(etNOx, Gasconc, Ps, NOxTemperature, NOout);
 COout:=COproduction+COin*Rho/molweight;
 dCOdtout:=EmissionFormationRate(etCO, Gasconc, Ps, COTemperature, COout);
 NumberOfSmokeSpheresout:=SmokeProd; //Radius of spheres 40 (nm);
 SootSphereRadiusout:=Rsootsphereinit; //Set soot sphere to initial value
 dSootSphereRadiusdtout:=EmissionFormationRate(etSmoke, gascompnewv,
 Ps, SmokeTemperature, Dummy);
 UHCout := UHCProduction;
 dUHCdtout := EmissionFormationRate(etUHC, gasconc, Ps,
 UHCTemperature, UHCout);
 end;
 end;
 end;
 Result:=true;
 end;

FCORise (Combusn.Pas)
//This function calculates the CO concentration rise due to combustion in
//kmol/m3 if all the C from the fuel would instantly be converted to CO.
function TCombustor.FCORise(const Fuelin, Flowout: TGasComposition;
 const Rho, FuelFlow, Wout: Double;
 var COproduction: Double): Boolean;
 var
 GasComp: TGascomposition;
 CinFuel: Double;
 begin
 Result:=false;
 GasComp := HCRatioMoleComposition(atomweightC+atomweightH*HCratio, FuelComposition);
 CinFuel := GasComp[gtCO2] + GasComp[gtCO] + GasComp[gtCH4] + 2*GasComp[gtC2H6]
 + 2*GasComp[gtC2H4] + 3*GasComp[gtC3H8] + 4*GasComp[gtC4H10]
 + GasComp[gtCxHy];
 //CinFuel is number of moles of C-atoms per mole fuel
 COproduction := CinFuel / FuelGasProps.MoleMass * FuelFlow / Wout * Rho;
 Result:=true;
 end;

FCp (GSPglobal.Pas)
//The aim of this function is to calculate the specific heat at constant
//pressure for a mixture using Cp-values calculated by FCpPerSpecie for the
//different species (equation C.23).
function FCp(const T: Double; const GC:TGasComposition): Double;
 var
 i : TGas;
 begin
 Result:=0;
 for i:=Low(i) to High(i) do if GC[i]>NearlyZero then

NLR-TR-2014-150

 159

 Result:=Result+GC[i]*FCpPerSpecie(T,GasProperties[i]);
 end;

FCpPerSpecie (GSPglobal.Pas)
//The purpose of this function is to calculate the specific heat at constant
//pressure (cp) for a given specie at a given temperature (equation C.22).
function FCpPerSpecie(const T: Double; const GP: TGasProperties): Double;
 begin //CoefsChangeTemp is the bordering temperature between the
 //two sets of (NASA) coefficients (here 1000 (K)).
 with GP do if T>CoefsChangeTemp then
 Result:=(Coefs_above1000[1]*IntPower(T,-2)
 +Coefs_above1000[2]*IntPower(T,-1)
 +Coefs_above1000[3]
 +Coefs_above1000[4]*T
 +Coefs_above1000[5]*IntPower(T, 2)
 +Coefs_above1000[6]*IntPower(T, 3)
 +Coefs_above1000[7]*IntPower(T, 4)
 +Coefs_above1000[8]*IntPower(T, 5)) * (Gasconst/MoleMass)
 else
 Result:=(Coefs_below1000[1]*IntPower(T,-2)
 +Coefs_below1000[2]*IntPower(T,-1)
 +Coefs_below1000[3]
 +Coefs_below1000[4]*T
 +Coefs_below1000[5]*IntPower(T, 2)
 +Coefs_below1000[6]*IntPower(T, 3)
 +Coefs_below1000[7]*IntPower(T, 4)
 +Coefs_below1000[8]*IntPower(T, 5)) * (Gasconst/MoleMass);
 end;

FCs (GSPglobal.Pas)
//This function is used to find the speed of sound at a temperature in a medium
//using equation 3.2.
function FCs(const T:double;const Gascomp:TGasComposition):double;
 begin
 Result:=Sqrt(FGm(T,GasComp)*FR(GasComp)*T);
 end;

FFuelNO (Combusn.Pas)
//This function calculates the fuelNOx formed as a mole fraction.
function TCombustor.FFuelNO(const WFlow, WFuel, WOxid, WWater,
 MixtureMoleMass: double;
 var FuelNO: double): boolean;
 begin //In interface a conversion fraction is given.
 Result:=false;
 FuelNO:=(FBNperc.Value/atomweightN)/100*MixtureMoleMass
 *WFuel/(WFuel+WOxid+WWater+WFlow)*FuelNconvfrac.Value;
 Result:=true;
 end;

FGm (GSPglobal.Pas)
//The aim of this function is to calculate the ratio of specific heats (gamma)
//for a given composition using equation C.10.
function FGm(const T:double;const GasComp:TGasComposition):double;
var
 Cp:double;
begin
 Cp:=FCp(T,GasComp);
 Result:=Cp/(Cp-FR(GasComp));
end;
FH (GSPglobal.Pas)
//This function calculates the enthalpy of a mixture at a given temperature
//using equation C.26. The function EnthalpyPerSpecie is used to calculate the
//enthalpy of individual species (equation C.25). The absolute value of the

NLR-TR-2014-150

 160

//enthalpy is determined by the condition that the enthalpy for a specie at
//T = 298.15 (K) is equal to the formation enthalpy of that specie at
//T = 298.15 (K).
function FH(const T: Double; const GC:TGasComposition): Double;
 var
 i : TGas;
 begin
 Result:=0;
 for i:=Low(i) to High(i) do if GC[i]>NearlyZero then
 Result:=Result+GC[i]*EnthalpyPerSpecie(T,GasProperties[i]);
 end;

FindExitEmissions (Combusn.Pas)
//The purpose of this function is to find the emissions levels and formation
//rates at each reactor exit using the emission levels and formation rates at
//the reactor entrance by applying the trapezium rule (Crank-Nicolson). The
//function (TCombustor.)'EmissionFormationRate' is used to find the emission
//formation rate as a function of (a.o.) the emission levels.
function TCombustor.FindExitEmissions(const Emission : TEmission;
 const Gascomp: TGascomposition;
 const Emissionin, dEmissiondtin, ExtraEmission,
 ResTime, Ps, Ts, Accuracy: double;
 var dEmissiondtout, Emissionout: Double):
Boolean;
 var
 i, AFQcode : integer;
 Emissionoutiter, dEmissiondt1, dEmissiondt2, err, dir : Double;
 begin
 //Gascomp is gas composition in KMole / m3 ! Emission in kMole / m3
 //ExtraEmission used for prompt formation of emissions (excl. smoke): for NOx
 //the sum of Fuel and Prompt NOx; for CO and UHC the formation in the flame;
 //If smoke is produced, the number of spheres is changed in
 //'EquilibriumReactor'.
 Result:=false;
 if (Emission=etSmoke) then
 begin //For smoke, dEmissiondtout is not depending Emissionout, so the
 //numerical integration is not implicit and no iteration is needed.
 dEmissiondtout:=EmissionFormationRate(Emission, Gascomp, Ps, Ts, Emissionout);
 Emissionout:=ResTime*(dEmissiondtin+dEmissiondtout)/2+Emissionin;
 if Emissionout<0 then Emissionout:=0;
 end
 else
 begin
 i:=0;
 ResetAFQmem;
 Emissionout:=Emissionin; //Initial emissionout guess equal to emissionin !
 repeat
 dEmissiondt1:=EmissionFormationRate(Emission,Gascomp, Ps, Ts, Emissionout);
 //dEmissiondt1 must be equal to dEmissiondt2, calculated using the method
 //of Crank-Nicolson (trapezium rule). Both are a function of Emissionout.
 dEmissiondt2:=2*(Emissionout-Emissionin-ExtraEmission)/ResTime-dEmissiondtin;
 err:=(dEmissiondt1-dEmissiondt2);
 //'err' Must be divided by a constant(!) with the same order of magnitude
 //as dEmissionsdt. Because this constant is not present, a relatively
 //large Accuracy is used here.
 if i=0 then dir:=0.95 else dir:=err;
 AFQcode:=AFQUIR(Emissionout,err,0,Accuracy,dir,40,
 (Owner as TGSPcomp).CompIDstr,EmissionoutIter);
 Emissionout:=Emissionoutiter;
 if Emissionout<0 then Emissionout:=0;
 inc(i);
 until (AFQcode>1) or ((i>5) and (Emissionout<NearlyZero));
 if AFQcode=3 then exit; //Error in AFQuir iteration.
 dEmissiondtout:=EmissionFormationRate(Emission,Gascomp, Ps, Ts, Emissionout);
 end;
 Result:=true;
 end;

NLR-TR-2014-150

 161

FormationEnthalpy (GSPglobal.Pas)
//The aim of this function is to calculate the formation enthalpy for a medium.
function FormationEnthalpy(const Composition:TGasComposition) : Double;
 var
 ig : TGas;
 Hform : Double;
 begin
 Hform:=0;
 for ig:=Low(ig) to High(ig) do
 //Assume formation enthalpy N2, O2, Ar en H2 zero :
 //The formation enthalpy of CxHy is added elsewhere.
 if not (ig in [gtN2, gtO2, gtAr, gtH2, gtCxHy]) then
 if Composition[ig]>NearlyZero then
 Hform:=Hform+Composition[ig]*GasProperties[ig].Hformation
 /GasProperties[ig].Molemass;
 //Note that Molemass unit is grammes, so for Result in J, multiply by 1000.
 Result:=1000*Hform;
 end;

FormEnthFromHeatValue (GSPglobal.Pas)
//The purpose of this function is to convert the user specified heating value
//into a(n artificial) formation enthalpy of H2 or C1H(H/C).
function FormEnthFromHeatValue(const HCratio, HeatingValue: Double): Double;
 begin
 if HCratio>1.0e12 then //Assume H2 is the fuel
 Result:=Heatingvalue
 //H2O formation enthalpy J/Mole: (negative value)
 +GasProperties[gtH2Og].Hformation
 //Conversion to J/Kg:
 /GasProperties[gtH2].MoleMass*1000
 else //Assume CxHy hydrocarbon fuel
 Result:=HeatingValue
 +(//H2O formation enthalpy J/Mole: (negative value)
 GasProperties[gtH2Og].Hformation*HCratio/2
 //CO2 formation enthalpy J/Mole: (negative value)
 +GasProperties[gtCO2].Hformation)
 //Conversion to J/Kg:
 /(atomweightC+atomweightH*HCratio)*1000;
 end;

FPromptNO (Combusn.Pas)
//The aim of this function is to calculate the amount of prompt-NOx produced
//in hydrocarbon flames.
function TCombustor.FPromptNO(const Flowin, Fuelin, Oxidin,
 Waterin: TGasconditions;
 const PhiEqRatio, P, A: double;
 var PromptNO: double): boolean;
 var PhiFunction, MolHCRatio, StoichNOEq: double;
 begin
 Result:=false;
 MolHCRatio:=MolarHCRatio(atomweightC+atomweightH*HCratio,Fuelin.Composition);

 //upper limit of 1.65 only valid if ethylene concentration is small!!
 if (MolHCRatio<NearlyZero) or (PhiEqRatio<=0.6) or (PhiEqRatio>=1.65) then
 PromptNO:=0
 else
 begin //Absolute value is taken because the polynom
 //could become negative around 1.6
 PhiFunction:=abs(0.72706908078726*IntPower(PhiEqRatio,5) //See memorandum,
 -3.86935072432971*IntPower(PhiEqRatio,4) //Figure 6.3.
 +7.85037810631911*IntPower(PhiEqRatio,3)
 -7.60023172369984*IntPower(PhiEqRatio,2)
 +3.55167189367785*PhiEqRatio-0.645780379414646);
 if not StoichNOEquilibrium(Flowin, Oxidin, Waterin, Fuelin, A,
 StoichNOEq) then
 begin

NLR-TR-2014-150

 162

 MessageDlg('No convergence in stoichiometric equilibrium NO',mtError,
 [mbOK], 0);
 exit;
 end;
 PromptNO:=MolHCRatio*PhiFunction*sqrt(P/100000)*StoichNOEq; //Equation 6.2.
 end;
 Result:=true;
 end;

FR (GSPglobal.Pas)
//This function calculates the specific gas constant (R) for a given mixture
//(equation H.1).
function FR(const GasComp:TGasComposition): Double;
 var
 ig : TGas;
 R : Double;
 begin
 R:=0;
 //Liquid water is excluded. In this way the universal gas constant R is
 //divided by the molar mass defined by equation C.29. Because this molar mass
 //is the reciprocal of the number of moles of gaseous species per gram of
 //mixture (n), defined by equation C.28, equation H.1 from the memorandum is
 //found.
 for ig:=Low(ig) to High(ig) do
 if (not (ig in [gtH2Ol]))
 and (GasComp[ig]>NearlyZero) then
 R:=R+GasComp[ig]/GasProperties[ig].MoleMass;
 Result:=Gasconst*R;
 end;

FS (GSPglobal.Pas)
//The entropy for a mixture is calculated by this function using equations C.32
//and C.33.
function FS(const T,p:double; const GC:TGasComposition):double;
 var
 i : TGas;
 Result1, Result2, invmolweight,gasfrac : Double;
 GCmole : TGasComposition;
 begin
 //Because the molweight is needed in this function the molecomposition is
 //calculated here in stead of calling the function molecomposition
 invmolweight:=0;
 Result1:=0;
 for i:=Low(i) to High(i) do if GC[i]>NearlyZero then
 begin
 GCmole[i]:=GC[i]/GasProperties[i].MoleMass;
 invmolweight:=invmolweight+GCmole[i];
 end
 else GCmole[i]:=0;
 for i:=Low(i) to High(i) do GCmole[i]:=GCmole[i]/invmolweight;
 gasfrac:=1-GCmole[gtH2Ol]; //This is the molar gas fraction of the medium.

 //Result1 uses the function FSperSpecie (equation C.34) to find the Sj0/R for
 //gaseous species (the first right-hand term in equation C.32, which is
 //completely divided by R) subtracts the second right-hand term from equation
 //C.32, and multiplies this with the molefractions for the gaseous part of the
 //medium.
 if T>CoefsChangeTemp then //CoefsChangeTemp is the bordering temperature
 //between the two sets of (NASA) coefficients (here 1000 (K)).
 begin
 for i:=Low(i) to High(i) do with GasProperties[i] do
 if (i<>gtH2Ol) and (GCmole[i]>NearlyZero) then
 Result1:=Result1+GCmole[i]*
 (FSperSpecie(T,Coefs_above1000)-ln(GCmole[i]/gasfrac));
 end
 else
 begin

NLR-TR-2014-150

 163

 for i:=Low(i) to High(i) do with GasProperties[i] do
 if (i<>gtH2Ol) and (GCmole[i]>NearlyZero) then
 Result1:=Result1+GCmole[i]*
 (FSperSpecie(T,Coefs_below1000)-ln(GCmole[i]/gasfrac));
 end;

 //Result2 subtracts the third right-hand term of equation C.32 (pressure
 //influence of entropy).
 Result2:=Result1-gasfrac*ln(p/100000);

 //In the final Result the Sj0/R of condensed species (water) is added and
 //after that the S/R for the mixture is multiplied with R.
 Result:=(Result2+GCmole[gtH2Ol]
 *FSperSpecie(T,GasProperties[gtH2Ol].Coefs_below1000))*invmolweight*Gasconst;
 end;

FSmokeProduction (Combusn.Pas)
//The goal of this function is to calculate the smoke production in flames in
//numbers of spheres, using equation 6.29 (=Lefebvre's expression).
function TCombustor.FSmokeProduction(const EqRatio, WTotalOxid, Ts,
 HCRatio, Ps3, Rsootsphereinit: double;
 var SmokeProd: double): boolean;
 const
 SootDensity = 1800; // (kg/m3)
 var
 Hweightcontent, FARatStoich, SootingCHMassFraction : double;

 begin
 result:=false;
 case FuelTypeIndex of
 0, 1, 2, 3, 4 : begin //Jet fuels, diesel or natural gas.
 FARatStoich:=StoichFuelAirRatio(HCRatio, FuelComposition);
 Hweightcontent:=100/(atomweightC/HCRatio+atomweightH);
 if Hweightcontent>18 then Hweightcontent:=18;
 //Otherwise negative smoke productions could occur;
 //no smoke will be produced then.
 SootingCHMassFraction:=1; //Only hydrocarbons present.
 end;
 5 : begin //Hydrogen.
 SootingCHMassFraction:=0; //If fuel is H2 no soot is expected
 Hweightcontent:=0; //No hydrocarbons present.
 end;
 6 : begin //Fuel with user specified composition.
 //The FARstoich of an average jet fuel is used; only limited smoke
 //production rates are expected for this type of fuel. See
 //discussion in chapter six of memorandum SK.
 FARatStoich:=0.0689;
 SootingCHMassFraction:=FuelComposition[gtCH4]+FuelComposition[gtC2H6]
 +FuelComposition[gtC2H4]+FuelComposition[gtC3H8]
 +FuelComposition[gtC4H10]+FuelComposition[gtCxHy];
 if SootingCHMassFraction<NearlyZero then Hweightcontent:=0
 else Hweightcontent:=(24.93323*FuelComposition[gtCH4]
 +19.95362*FuelComposition[gtC2H6]
 +14.25834*FuelComposition[gtC2H4]
 +18.14199*FuelComposition[gtC3H8]
 +17.204749*FuelComposition[gtC4H10]
 +100/(atomweightC/HCRatio+atomweightH)

 *FuelComposition[gtCxHy])
 /SootingCHMassFraction;
 if Hweightcontent>18 then Hweightcontent:=18; //Otherwise negative smoke
 end; //predicted!
 end; //end case statement
 //This is the modified expression derived from prof Lefebvre's expression:
 //the third line is a correction for the case that not only hydrocarbons are
 //present in fuel; the last line above is conversion from kg to number of
 //spheres.
 SmokeProd:=(0.0145*1e-6*EqRatio*FARatStoich*sqr(Ps3/1000)
 /WTotalOxid/Ts*Power(18-Hweightcontent,1.5))
 *SootingCHMassFraction

NLR-TR-2014-150

 164

 /SootDensity/(4*Pi/3*IntPower(Rsootsphereinit,3));

 result:=true;
 end;

FSperSpecie (GSPglobal.Pas)
//This function determines the value of Sj0/R (the steady state entropy divided
//by the universal gas constant, see NASA RP1311, p 74, or the memorandum C.34,
//C.32 and C.33) for a specie.
function FSperSpecie(const T:double;const GC : TGasCoefArray):double;
begin
Result:=-GC[1]/2*IntPower(T,-2)
 -GC[2]*IntPower(T,-1)
 +GC[3]*LN(T)
 +GC[4]*T
 +GC[5]/2*IntPower(T,2)
 +GC[6]/3*IntPower(T,3)
 +GC[7]/4*IntPower(T,4)
 +GC[8]/5*IntPower(T,5)
 +GC[10];
end;

FuelFormationandReactantEnthalpy (GSPglobal.Pas)
//This function calculates the fuel formation enthalpy and the fuel reactant
//enthalpy per kg for all fuels except fuels with user specified composition.
//Also the heating value at the chemical reference temperature (298.15 (K)) is
//calculated.
function FuelFormationandReactantEnthalpy(const UserSpecCp, HCRatio, THVCp,
 Tfuel, LowerHeatingValue: double;
 const FuelGasProps : TGasProperties;
 var FuelFormationEnthalpyPerKg,
 FuelReactantEnthalpyPerKg,
 Hv_at_29815 : double): boolean;
 var
 CpdivRoffset, DeltaHReactForHeatValue : double;
 begin
 Result:=false;
 FuelFormationEnthalpyPerKg:=0;
 FuelReactantEnthalpyPerKg:=0;

 //Cp/R fuel correction effect factor on Hv: this factor is used to shift the
 //Cp(/R) polynomial (thus also the enthalpy polynomial) upwards or downwards.
 CpdivRoffset:=(UserSpecCp - FCpperspecie(THVCp, FuelGasProps))
 *FuelGasProps.MoleMass/Gasconst;

 //Hv correction due to heat used for fuel heat up/down from Hv THvCp to
 //TrefChemical: necessary to find the heating value at TrefChemical.
 DeltaHReactForHeatValue:=EnthalpyChange(THVCp, TrefChemical,FuelGasProps)
 +GasConst/FuelGasProps.MoleMass*CpdivRoffset*(THVCp-TrefChemical);

 if HCRatio>1.0e12 then //Assume H2 as fuel (HCratio (probably) = Infinite)
 Hv_at_29815:=LowerHeatingValue //HV_at_298.15=Heating value at TrefChemical.
 +GasProperties[gtH2Og].MoleMass/FuelGasProps.MoleMass
 *EnthalpyChange(THVCp, TrefChemical,GasProperties[gtH2Og])
 -GasProperties[gtO2].MoleMass/FuelGasProps.MoleMass/2
 *EnthalpyChange(THVCp, TrefChemical,GasProperties[gtO2])
 -DeltaHReactForHeatValue
 else //Assume fuel containing only CxHy
 Hv_at_29815:=LowerHeatingValue
 +HCRatio/2*GasProperties[gtH2Og].MoleMass/FuelGasProps.MoleMass
 *EnthalpyChange(THVCp, TrefChemical,GasProperties[gtH2Og])
 +GasProperties[gtCO2].MoleMass/FuelGasProps.MoleMass
 *EnthalpyChange(THVCp, TrefChemical,GasProperties[gtCO2])
 -GasProperties[gtO2].MoleMass/FuelGasProps.MoleMass/2
 *EnthalpyChange(THVCp, TrefChemical,GasProperties[gtO2])
 -DeltaHReactForHeatValue;

NLR-TR-2014-150

 165

 FuelFormationEnthalpyPerKg:=FormEnthFromHeatValue(HCratio,Hv_at_29815);
 FuelReactantEnthalpyPerKg:=EnthalpyChange(Tfuel,TrefChemical, FuelGasProps)
 +GasConst/FuelGasProps.MoleMass*CpdivRoffset*(TFuel-TrefChemical);
 Result:=true;
 end;

FUHCProduction (Combusn.pas)
//This function is used to find the production of unburned hydrocarbons
//in reactors containing a flame. The value of UHCProduction is in (kmole/m3)
function TCombustor.FUHCProduction(const Wfreactor, Rho, Wtotal : double;
 const FuelComposition : TGascomposition;
 var UHCProduction: double): boolean;
 var
 KmoleFuel : double;
 begin
 Result := false;
 case FuelTypeIndex of
 0, 1, 2, 3: KmoleFuel := Wfreactor / 167.31462; //Fuel assumed to be C12H23
 4: KmoleFuel := Wfreactor / 16.04276; //Fuel assumed to be CH4
 5: KmoleFuel := 0; //Hydrogen does not produce UHC.
 6: KmoleFuel := Wfreactor*(FuelComposition[gtCH4] + FuelComposition[gtC2H6]
 +FuelComposition[gtC2H4] + FuelComposition[gtC3H8]
 +FuelComposition[gtC4H10]+ FuelComposition[gtCxHy])
 / 16.04276; //Fuel assumed to be CH4
 end;
 UHCProduction := KmoleFuel * Rho / Wtotal;
 Result:=true;
 end;

GetStaticfromM (GSPglobal.Pas)
//The aim of this function is to calculate the static pressure and temperature,
//as well as the flow speed and the flow cross section area for a given Mach
//number and given total temperature and pressure and composition.
function GetStaticfromM(const M, Pt, Tt, W: double;
 const Composition: TGasComposition;
 var Ps, Ts, V, A: double): boolean;
 var i : integer;
 Gamma1, Tsiter : double;
 begin
 Result:=false;
{ i:=0;
 Ts:=Tt; //first guess
 ResetAFQmem;
 repeat
 Gamma1:=FGm(Ts, Composition);
 Gamma2:=1+2/sqr(M)*(Tt/Ts-1);
 err:=Gamma1-Gamma2;
 if i=0 then dir:=0.95
 else dir:=err;
 AFQcode:=AFQUIR(Ts,err,0,0.001,dir,40,
 'Combustor in GetStaticFromM iteration',Tsiter);
 Ts:=Tsiter;
 inc(i);
 until AFQcode>1;
 if AFQcode=3 then exit; }
 i:=0;
 Tsiter:=Tt; //First guess
 repeat //Iteration to find proper Ts.
 Ts:=Tsiter;
 Gamma1:=FGm(Ts, Composition); //Calculate gamma for guessed Ts.
 Tsiter:=Tt/(1+(Gamma1-1)/2*sqr(M)); //Calculate new Ts guess from gamma
 inc(i); //and Mach-number.
 until (abs(Ts-Tsiter)<0.001) or (i>24);
 if i>24 then
 begin
 MessageDlg('No convergence in GetStaticfromM iteration',mtError, [mbOK], 0);
 Exit;

NLR-TR-2014-150

 166

 end;

 //Calculation of other data:
 V:=M*FCs(Ts, Composition);
 Ps:=Pt/(Power(1+(Gamma1-1)/2*sqr(M),(Gamma1/(Gamma1-1))));
 A:=W*V/(Gamma1*Ps*sqr(M));
 Result:=true;
 end;

GetStaticfromV (GSPglobal.Pas)
//The aim of this function is to calculate the static pressure and temperature,
//as well as the Mach-number and the flow cross section area for a given flow
//speed and given total temperature and pressure and composition.
function GetStaticfromV(const V, Pt, Tt, W: double;
 const Composition: TGasComposition;
 var Ps, Ts, M, A: double): boolean;
 var
 i : integer;
 Gamma1, Tsiter : double;
 begin
 Result:=false;
{ i:=0;
 Ts:=Tt; //first guess
 ResetAFQmem;

 repeat
 Gamma1:=FGm(Ts, Composition);
 M:=V/FCs(Ts, Composition);
 Gamma2:=1+2/sqr(M)*(Tt/Ts-1);
 err:=Gamma1-Gamma2;
 if i=0 then dir:=0.95
 else dir:=err;
 AFQcode:=AFQUIR(Ts,err,0,0.001,dir,40,
 'Combustor in GetStaticFromV iteration',Tsiter);
 Ts:=Tsiter;
 inc(i);
 until AFQcode>1;
 if AFQcode=3 then exit;}
 i:=0;
 Tsiter:=Tt; //First guess.
 repeat //Iteration to find proper Ts.
 Ts:=Tsiter;
 Gamma1:=FGm(Ts, Composition); //Calculate gamma for guessed Ts.
 M:=V/FCs(Ts, Composition); //Calculate Mach-number for guessed Ts.
 Tsiter:=Tt/(1+(Gamma1-1)/2*sqr(M)); //Calculate new value for Ts using
 inc(i); //calculated gamma and Mach-number.
 until (abs(Ts-Tsiter)<0.001) or (i>24);
 if i>24 then
 begin
 MessageDlg('No convergence in GetStaticfromV iteration',mtError, [mbOK], 0);
 Exit;
 end;

 //Calculation of other data.
 Ps:=Pt/(Power(1+(Gamma1-1)/2*sqr(M),(Gamma1/(Gamma1-1))));
 A:=W*V/(Gamma1*Ps*sqr(M));
 Result:=true;
 end;

HCratioMassComposition (GSPglobal.Pas)
//This function converts the molecomposition into a masscomposition. A component
//CxHy is allowed to be present in the molecomposition.
function HCratioMassComposition(const CxHyMoleMass: Double;
 const MoleComposition: TGasComposition):TGasComposition;
 //The molemass is based on C1H(H/C).
 var
 i : TGas;

NLR-TR-2014-150

 167

 molweight : Double;
 GC : TGasComposition;
 begin
 if (abs(MoleComposition[gtCxHy]-1)<NearlyZero) then //Fuel contains only CxHy.
 Result:=MoleComposition
 else
 begin
 if (abs(MoleComposition[gtCxHy])<NearlyZero) then //User specified fuel com-
 begin //position without CxHy.
 molweight:=0;
 for i:=Low(i) to High(i) do if MoleComposition[i]>NearlyZero then
 begin
 GC[i]:=MoleComposition[i]*GasProperties[i].MoleMass;
 molweight:=molweight+GC[i];
 end
 else GC[i]:=0;
 for i:=Low(i) to High(i) do Result[i]:=GC[i]/molweight;
 end
 else //User specified fuel with CxHy component present.
 begin
 molweight:=0;
 for i:=Low(i) to High(i) do
 if (not (i in [gtCxHy])) and (MoleComposition[i]>NearlyZero) then
 begin
 GC[i]:=MoleComposition[i]*GasProperties[i].MoleMass;
 molweight:=molweight+GC[i];
 end
 else GC[i]:=0;
 GC[gtCxHy]:=MoleComposition[gtCxHy]*CxHyMoleMass;
 molweight:=molweight+GC[gtCxHy];
 for i:=Low(i) to High(i) do Result[i]:=GC[i]/molweight;
 end;
 end;
 end;

HCratioMoleComposition (GSPglobal.Pas)
//This function converts the masscomposition into a molecomposition, even if the
//masscomposition contains a component CxHy.
function HCratioMoleComposition(const CxHyMoleMass: Double;
 const MassComposition: TGasComposition):TGasComposition;
 //The CxHyMoleMass is based on C1H(H/C)
 var
 i : TGas;
 invmolweight: Double;
 GC : TGasComposition;
 begin
 if (abs(MassComposition[gtCxHy]-1)<NearlyZero) then //Fuel contains only CxHy.
 Result:=MassComposition
 else
 begin
 if (abs(MassComposition[gtCxHy])<NearlyZero) then //User specified fuel com-
 begin //position without CxHy.
 invmolweight:=0;
 for i:=Low(i) to High(i) do if MassComposition[i]>NearlyZero then
 begin
 GC[i]:=MassComposition[i]/GasProperties[i].MoleMass;
 invmolweight:=invmolweight+GC[i];
 end
 else GC[i]:=0;
 for i:=Low(i) to High(i) do Result[i]:=GC[i]/invmolweight;
 end
 else //User specified fuel with CxHy component present.
 begin
 invmolweight:=0;
 for i:=Low(i) to High(i) do
 if (not (i in [gtCxHy])) and (MassComposition[i]>NearlyZero) then
 begin
 GC[i]:=MassComposition[i]/GasProperties[i].MoleMass;
 invmolweight:=invmolweight+GC[i];

NLR-TR-2014-150

 168

 end
 else GC[i]:=0;
 GC[gtCxHy]:=MassComposition[gtCxHy]/CxHyMoleMass;
 invmolweight:=invmolweight+GC[gtCxHy];
 for i:=Low(i) to High(i) do Result[i]:=GC[i]/invmolweight;
 end;
 end;
 end;

MassComposition (GSPglobal.Pas)
//The purpose of this function is to convert a molecomposition into a
//masscomposition.
function MassComposition(const MoleComposition:TGasComposition):TGasComposition;
var
 i : TGas;
 molweight: double;
 GC : TGasComposition;
begin
molweight:=0;
for i:=Low(i) to High(i) do if MoleComposition[i]>NearlyZero then
 begin
 GC[i]:=MoleComposition[i]*GasProperties[i].MoleMass;
 molweight:=molweight+GC[i];
 end
else GC[i]:=0;
for i:=Low(i) to High(i) do Result[i]:=GC[i]/molweight;
end;

MixGasComposition (GSPglobal.Pas)
//The purpose of this function is to mix two compositions without reactions
//occurring.
function MixGasComposition(const GC1,GC2 : TGasComposition;
 const M1,M2 : Double): TGasComposition;
 var
 ig : TGas;
 begin
 for ig:=Low(ig) to High(ig) do Result[ig]:=(M1*GC1[ig]+M2*GC2[ig])/(M1+M2);
 end;

MolarHCratio (GSPglobal.Pas)
//new CxHy, Steven Kluiters
//This function calculates the hydrocarbon molar ratio, i.e. the number of moles
//of hydrocarbons relative to the total number of moles in the mixture.
function MolarHCRatio(const CxHyMoleMass: double;
 const FuelComp: TGasComposition): Double;
 var GasComp : TGasComposition; //Procedure can be used for UHC calculation
 begin //and for Prompt NOx calculation.
 GasComp:=HCRatioMoleComposition(CxHyMoleMass, FuelComp);
 Result := GasComp[gtCH4] + GasComp[gtC2H6] + GasComp[gtC2H4] + GasComp[gtC3H8]+
 GasComp[gtC4H10] + GasComp[gtCxHy];
 end;

MoleComposition (GSPglobal.Pas)
//The aim of this function is to calculate the molecomposition from the
//masscomposition.
function MoleComposition(const MassComposition:TGasComposition):TGasComposition;
 var
 i :TGas;
 invmolweight:double;
 GC : TGasComposition;
 begin
 invmolweight:=0;
 for i:=Low(i) to High(i) do if MassComposition[i]>NearlyZero then
 begin

NLR-TR-2014-150

 169

 GC[i]:=MassComposition[i]/GasProperties[i].MoleMass;
 invmolweight:=invmolweight+GC[i];
 end
 else GC[i]:=0;
 for i:=Low(i) to High(i) do Result[i]:=GC[i]/invmolweight;
 end;

MultiReactorLoop (Combusn.Pas)
//This function is called once for every combustion chamber used. Unlike
//'TCombustor.SingleReactorLoop' it doesn't only calculate conmbustor exit
//conditions, but also emission levels. Therefore, it is only used if the multi-
//reactor emission model is used. 'EquilibriumReactor' is used to find exit
//conditions and emission levels for each reactor separately.
function TCombustor.MultiReactorLoop(const Mode : TCalcMode) : Boolean;
 var
 iintersection, irow : integer;
 //new 20-9-1998, Steven Kluiters
 NOfraction, Normationfactor,
 //end new 20-9-1998
 dNOdtin, NOin, dNOdtout, NOout, NOeq, O2, dCOdtin, COin, dCOdtout, COout,
 {EqRatio, ChemEqRatio, Wwater,} Ain, WOxidFrac,molew_div_rho, COeq,
 SootsphereRadiusin, dSootsphereRadiusdtin, NumberOfSmokeSpheresin,
 dUHCdtin, UHCin, ResTime, SootsphereRadiusout, ParticulateMassLoading,
 dSootsphereRadiusdtout, NumberOfSmokeSpheresout, SmokeNumber,
 dUHCdtout, UHCout, WTotalFuel, WTotalOxid, Wtotalwater, L: double;
 ig : TGas;
 GasCompNewm, GasCompNewv, Gasconc : TGasComposition;
 Flowin,Oxidin,Fuelin,Waterin : TGasConditions;
 begin
 Result:=false;

 //Set initial flow properties (at start of series of reactors) using data from
 //the component before and from the user-interface:
 Flowin:=CombustionIn;
 Flowin.W:=0;
 Oxidin:=CombustionIn;
 Fuelin.Composition:=Fuelcomposition;
 Fuelin.Tt:=Tfuel.Value;
 Waterin.Composition:=Waterinjcomposition;
 Waterin.Tt:=Twaterinj;
 WtotalOxid:=0;
 WtotalFuel:=0;
 WtotalWater:=0;

 //Initially (before the flame) the carbon monoxide, unburned hydrocarbons and
 //smoke concentrations are made equal to zero: they are assumed to be burnt in
 //a subsequent combustion chamber, without influencing new build-up of
 //emissions. The NO(x) concentration is assumed to be non-zero and is known
 //because it is present in the vector describing the composition of the
 //working medium (in this case 'CombustionIn'). For calculational reasons, the
 //'NOin' is made equal to zero.
 dNOdtin:=0;
 NOin:=0;
 dCOdtin:=0;
 COin:=0;
 NumberofSmokeSpheresIn :=0;
 SootSphereRadiusIn :=0;
 dSootSphereRadiusdtIn :=0;
 SmokeNumber :=0;
 UHCin :=0;
 dUHCdtin :=0;

 //Calculate composition and speed, etc. subsequently for each reactor
 with ReactorGrid do
 begin
 for iintersection:=0 to RowCount-2 do
 begin
 irow:=iintersection+1; //Corresponding row in ReactorGrid
 //Calculate

NLR-TR-2014-150

 170

 if Mode=cmDesign then case Vspecifier.Itemindex of
 0 : Out1.A := DValues[1,irow];
 1 : Out1.Mach := DValues[2,irow];
 2 : Out1.V := DValues[3,irow];
 end;
 L := DValues[4,irow]; // L ignored for iintersection=0 !!
 Fuelin.W := DValues[5,irow]*Wf;
 Oxidin.W := DValues[6,irow]*CombustionIn.W;
 Waterin.W:= DValues[7,irow]*Wwaterinj;
 WtotalOxid:=WtotalOxid+Oxidin.W;
 WtotalFuel:=WtotalFuel+Fuelin.W;
 if not EquilibriumReactor(Mode,dlHigh, Vspecifier.Itemindex,
 iintersection, Flowin, Fuelin, Oxidin,
 Waterin, Out1, L,
 dNOdtin, NOin, dCOdtin, COin,
 dUHCdtin, UHCin,
 NumberOfSmokeSpheresin, SootSphereRadiusin,
 dSootSphereRadiusdtin,
 WTotalFuel, WTotalOxid, Wtotalwater,
 dNOdtout, NOout, NOeq, dCOdtout, COout, COeq, O2,
 dUHCdtout, UHCout,
 NumberOfSmokeSpheresout, SootSphereRadiusout,
 dSootSphereRadiusdtout,
 molew_div_rho,ResTime) then Exit;
 WtotalWater:=WtotalWater+Waterin.W;

 if Vspecifier.Itemindex<>2 then DValues[3,irow]:=Out1.V;
 if Vspecifier.Itemindex<>1 then DValues[2,irow]:=Out1.Mach;
 //DValues[2,irow] :=Out1.Mach;
 //DValues[3,irow] :=Out1.V;
 //Additional output is put in ReactorGrid for test purposes:
 DValues[13,irow] :=Out1.Ts;
 DValues[14,irow] :=Out1.Ps;
 //Conversion from kMole/m3 to ppm (volume) with molew_div_rho:
 DValues[15,irow]:=NOout*molew_div_rho*1e6; // ppm
 DValues[16,irow]:=dNOdtout*molew_div_rho*1e6; // ppm
 DValues[17,irow]:=NOeq; // ppm
 DValues[18,irow]:=COout*molew_div_rho*1e6; // ppm
 DValues[19,irow]:=dCOdtout*molew_div_rho*1e6; // ppm
 DValues[20,irow]:=COeq; // ppm
 DValues[21,irow]:=UHCout*molew_div_rho*1e6; // ppm
 DValues[22,irow]:=dUHCdtout*molew_div_rho*1e6; // ppm
 DValues[23,irow]:=NumberOfSmokeSpheresout;
 DValues[24,irow]:=SootSphereRadiusout*1.0e+9; // [nm]
 DValues[25,irow]:=dSootSphereRadiusdtout*1.0e+9; // [nm/s]
 DValues[26,irow]:=O2; // ppm
 //HCratio of 1 as dummy here since there is no CxHy anymore in Out1
 DValues[27,irow]:=ChemicalEqRatio(Out1.Composition,1{HCratio});
 DValues[28,irow]:=ResTime;
 //The output data for a reactor are used as input data for the next
 //reactor:
 Flowin:=Out1;
 dNOdtin:=dNOdtout;
 NOin:=NOout;
 dCOdtin:=dCOdtout;
 COin:=COout;
 dUHCdtin:=dUHCdtout;
 UHCin:=UHCout;
 NumberOfSmokeSpheresin:=NumberOfSmokeSpheresout;
 SootSphereRadiusin:=SootSphereRadiusout;
 dSootSphereRadiusdtin:=dSootSphereRadiusdtout;
 //End calculate
 end;
 NOexit:=NOout; //combustor exit NO concentration [kMole/m3]=last reactor NO
 COexit:=COout; //combustor exit CO concentration [kMole/m3]=last reactor CO
 UHCexit:=UHCout;//combustor exit UHC concentration [kMole/m3]=last reactor UHC
 //new 20-9-1998, Steven Kluiters:
 //First the Density (Rho) at the exit is calculated, using the equilibrium
 //composition. This density is used to convert the NOout to (kg NO/kg
 //mixture). Subsequently, the equilibrium NO-value is replaced by the
 //kinetic NO-value. Because the sum of all species will not be one anymore,

NLR-TR-2014-150

 171

 //a normationfactor is calculated, which is the sum of all species with the
 //NO replaced. The new (mass) composition is found by dividing the fractions
 //by the normation factor. Errors that are made are (a.o.) the fact that the
 //equilibrium composition is used (with the equilibrium amount of NO) to
 //calculate density, the fact that the relation C : H : O : N changes
 //because of the NO replacement and the fact that the temperature should be
 //corrected because of the change in composition. The effects of these
 //errors are assumed to be small.
 with Out1 do
 begin
 Rhoexit:=Ps/FR(Composition)/Ts;
 NOfraction:=NOout/Rhoexit*30.00614;
 Normationfactor:=1-Composition[gtNO]+NOfraction;
 Composition[gtNO]:=NOfraction;
 for ig:=Low(ig) to High(ig) do //Scale fractions down to total one.
 Composition[ig]:=Composition[ig]/Normationfactor;
 end;
//end new 20-9-1998
 //Smoke Number at exit:

ParticulateMassLoading:=4*Pi/3*IntPower(SootSphereRadiusout,3)*1800*NumberOfSmokeSpheres
out*Rhoexit;
 SmokeNrExit:=372761991989.351*IntPower(ParticulateMassLoading,2)
 +8393954.78459032*ParticulateMassLoading;
 end;
 Result:=true;
 end;

PhiIJ (GSPglobal.Pas)
//This function calculates the viscosity interaction coefficient for two
//species by applying equation C.43.
function PhiIJ(const MoleMassi, MoleMassj, VisCosi, VisCosj: double): double;
 begin
 Result:=0.25*sqr(1+sqrt(VisCosi/VisCosj)*Power(MoleMassj/MoleMassi,0.25))
 *sqrt(2*MoleMassj/(MoleMassi+MoleMassj));
 end;

PmaxH2Ovapour (GSPglobal.Pas)
//This function gives the maximum H2O vapour pressure at a given temperature.
function PmaxH20vapour(const T : Double): Double;
 begin
 //Result is in N/m2! The formula is valid until at least 400 (K) (error = 1%).
 //Above that temperature the formula is used as an approximation, which
 //slightly gets worse. Just before the critical temperature the error is
 //about 7%.
 Result:=611*Power(10,(7.5*(T-273.15)/(T-35.85)));
 end;

ProdfromReact (GSPglobal.Pas)
//new 28-7-1998 Steven Kluiters, this function calculates (guesses) a new
//composition after a burning process; O, H, OH, NO, N2O and N2 are supposed
//to participate in the reactions; after the reaction, only (of these species)
//N2 can be present. Liquid water is assumed to evaporate. In case of fuel-rich
//combustion (phi>1), the assumption is made that all C is converted to CO and
//all H to H2; of there is not enough oxygen for this, the function will give
//the result 'false'. In other cases, the amount of oxygen that is left
//(ExcessO, see below), is distributed amongst H2 and CO to form H2O and CO2.
//This calculated composition is not realistic, but it is only a start for the
//procedures calculating the equilibrium compositions and temperatures.
function ProdfromReact(const Wfuel, Woxid, HCRatio : Double;
 const FuelComp, OxidComp: TGasComposition;
 var Gascomp: TGasComposition): boolean;
 var //complete procedure is changed 5-7-1998 and also 28-7-1998!!
 i : TGas;
 ExcessO, PrelCO, PrelH2, CxHyMoleMass: Double;
 //CxHy is only assumed to exist in the fuel, not in the oxid!

NLR-TR-2014-150

 172

 begin
 Result:=false;
 for i:=Low(i) to High(i) do Gascomp[i]:=0;

 if (abs(FuelComp[gtCxHy]-1)<NearlyZero) then //Fuel containing only CxHy
 begin
 CxHyMoleMass:=atomweightC+atomweightH*HCRatio;
 Gascomp[gtO2]:=Woxid*OxidComp[gtO2]+GasProperties[gtO2].Molemass*
 (Woxid*(0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +0.5*OxidComp[gtN2O]/GasProperties[gtN2O].Molemass
 +0.5*OxidComp[gtO]/GasProperties[gtO].Molemass
 +0.25*OxidComp[gtOH]/GasProperties[gtOH].Molemass
 -0.5*OxidComp[gtCO]/GasProperties[gtCO].Molemass
 -0.5*OxidComp[gtH2]/GasProperties[gtH2].Molemass
 -2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 -3.5*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 -3*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 -5*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 -6.5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 -0.25*OxidComp[gtH]/GasProperties[gtH].Molemass)
 -Wfuel*(1+HCRatio/4)/CxHyMoleMass);
 if (Gascomp[gtO2]>0) then //There is enough oxygen for complete burning
 begin
 Gascomp[gtCO2]:=GasProperties[gtCO2].Molemass* //Also assume complete
 (Wfuel*1/CxHyMoleMass //burning of O, H and OH.
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +OxidComp[gtCO]/GasProperties[gtCO].Molemass
 +OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass));
 Gascomp[gtAr]:=Woxid*OxidComp[gtAr];
 Gascomp[gtH2Og]:=GasProperties[gtH2Og].Molemass*
 (Wfuel*HCRatio/2/CxHyMoleMass
 +Woxid*(OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtH2]/GasProperties[gtH2].Molemass
 +2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*OxidComp[gtH]/GasProperties[gtH].MoleMass
 +0.5*OxidComp[gtOH]/GasProperties[gtOH].MoleMass));
 Gascomp[gtN2]:=Woxid*(OxidComp[gtN2]+GasProperties[gtN2].Molemass*
 (0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass));
 end
 else
 begin //ExcessO is the amount of oxygen that is left if all the fuel
 //is converted to CO and H2
 ExcessO:=-Wfuel/CxHyMoleMass
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +2*OxidComp[gtO2]/GasProperties[gtO2].Molemass
 +OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtO]/GasProperties[gtO].Molemass
 +OxidComp[gtOH]/GasProperties[gtOH].Molemass
 +OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass
 -OxidComp[gtCH4]/GasProperties[gtCH4].Molemass //if the oxides cannot
 -2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass //contain hydrocar-
 -2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass //bons, these lines
 -3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass //can be omitted
 -4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass);
 if (ExcessO < 0) then Exit //There is not enough oxygen to complete
 //conversion to CO and H2: exit function.
 else //Calculation can proceed.
 begin //PrelCO and PrelH2 are the numbers of kmol/s CO and H2
 //formed in case there is just enough oxygen for fuel

NLR-TR-2014-150

 173

 //oxidation to CO and H2 (ExcessO = 0).
 PrelCO:=Wfuel/CxHyMoleMass
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +OxidComp[gtCO]/GasProperties[gtCO].Molemass
 +OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass);
 PrelH2:=Wfuel/CxHyMoleMass
 +Woxid*(OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtH2]/GasProperties[gtH2].Molemass
 +2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*OxidComp[gtH]/GasProperties[gtH].Molemass
 +0.5*OxidComp[gtOH]/GasProperties[gtOH].Molemass);
 Gascomp[gtCO]:=GasProperties[gtCO].Molemass
 PrelCO(1-1/(PrelCO+PrelH2)*ExcessO);
 //Can this become negative? In theory, it can not become negative; that
 //would mean that there is enough oxygen to form CO2 and H2O, so that we
 //shouldn't have arrived in this part of the function in the first place.
 Gascomp[gtH2]:=GasProperties[gtH2].Molemass
 PrelH2(1-1/(PrelH2+PrelCO)*ExcessO);
 Gascomp[gtCO2]:=GasProperties[gtCO2].Molemass
 *(1/(1+PrelH2/PrelCO))*ExcessO;
 Gascomp[gtAr]:=Wfuel*FuelComp[gtAr]+Woxid*OxidComp[gtAr];
 Gascomp[gtO2]:=0;
 Gascomp[gtH2Og]:=GasProperties[gtH2Og].Molemass
 *(1/(1+PrelCO/PrelH2))*ExcessO;
 Gascomp[gtN2]:=Woxid*(OxidComp[gtN2]+GasProperties[gtN2].Molemass*
 (0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass));
 end;
 end;
 end

 else //Fuel with other components than CxHy;
 begin //CxHyMoleMass belongs to component CxHy.
 CxHyMoleMass:=atomweightC+atomweightH*HCRatio;
 Gascomp[gtO2]:=Wfuel*FuelComp[gtO2]+Woxid*OxidComp[gtO2]
 +GasProperties[gtO2].Molemass*
 (Wfuel*(0.5*FuelComp[gtNO]/GasProperties[gtNO].Molemass
 +0.5*FuelComp[gtN2O]/GasProperties[gtN2O].Molemass
 +0.5*FuelComp[gtO]/GasProperties[gtO].Molemass
 +0.25*FuelComp[gtOH]/GasProperties[gtOH].Molemass
 -0.5*FuelComp[gtCO]/GasProperties[gtCO].Molemass
 -0.5*FuelComp[gtH2]/GasProperties[gtH2].Molemass
 -2*FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 -3.5*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 -3*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 -5*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 -6.5*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 -0.25*FuelComp[gtH]/GasProperties[gtH].Molemass
 -(1+HCRatio/4)*FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +0.5*OxidComp[gtN2O]/GasProperties[gtN2O].Molemass
 +0.5*OxidComp[gtO]/GasProperties[gtO].Molemass
 +0.25*OxidComp[gtOH]/GasProperties[gtOH].Molemass
 -0.5*OxidComp[gtCO]/GasProperties[gtCO].Molemass
 -0.5*OxidComp[gtH2]/GasProperties[gtH2].Molemass
 -2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 -3.5*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 -3*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 -5*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 -6.5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 -0.25*OxidComp[gtH]/GasProperties[gtH].Molemass));
 if (Gascomp[gtO2]>0) then //There is enough oxygen for complete burning

NLR-TR-2014-150

 174

 begin
 //also assume complete burning of O, H and OH
 Gascomp[gtCO2]:=GasProperties[gtCO2].Molemass*
 (Wfuel*(FuelComp[gtCO2]/GasProperties[gtCO2].Molemass
 +FuelComp[gtCO]/GasProperties[gtCO].Molemass
 +FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +OxidComp[gtCO]/GasProperties[gtCO].Molemass
 +OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass));
 Gascomp[gtAr]:=Wfuel*FuelComp[gtAr]+Woxid*OxidComp[gtAr];
 Gascomp[gtH2Og]:=GasProperties[gtH2Og].Molemass*
 (Wfuel*(FuelComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +FuelComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +FuelComp[gtH2]/GasProperties[gtH2].Molemass
 +2*FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*FuelComp[gtH]/GasProperties[gtH].MoleMass
 +0.5*FuelComp[gtOH]/GasProperties[gtOH].MoleMass
 +HCRatio/2*FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtH2]/GasProperties[gtH2].Molemass
 +2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*OxidComp[gtH]/GasProperties[gtH].MoleMass
 +0.5*OxidComp[gtOH]/GasProperties[gtOH].MoleMass));
 Gascomp[gtN2]:=Wfuel*FuelComp[gtN2]+Woxid*OxidComp[gtN2]+
 GasProperties[gtN2].Molemass*
 (Wfuel*(0.5*FuelComp[gtNO]/GasProperties[gtNO].Molemass
 +FuelComp[gtN2O]/GasProperties[gtN2O].Molemass)
 +Woxid*(0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass));
 end
 else //There is not enough oxygen for complete combustion.
 begin //ExcessO is the amount of oxygen that is left if all the fuel
 //is converted to CO and H2.
 ExcessO:=Wfuel*(FuelComp[gtCO2]/GasProperties[gtCO2].Molemass
 +2*FuelComp[gtO2]/GasProperties[gtO2].Molemass
 +FuelComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +FuelComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +FuelComp[gtO]/GasProperties[gtO].Molemass
 +FuelComp[gtOH]/GasProperties[gtOH].Molemass
 +FuelComp[gtNO]/GasProperties[gtNO].Molemass
 +FuelComp[gtN2O]/GasProperties[gtN2O].Molemass
 -FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 -2*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 -2*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 -3*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 -4*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 -FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +2*OxidComp[gtO2]/GasProperties[gtO2].Molemass
 +OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtO]/GasProperties[gtO].Molemass
 +OxidComp[gtOH]/GasProperties[gtOH].Molemass

NLR-TR-2014-150

 175

 +OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass
 -OxidComp[gtCH4]/GasProperties[gtCH4].Molemass //if the oxides cannot
 -2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass //contain hydrocar-
 -2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass //bons, these lines
 -3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass //can be omitted
 -4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass);
 if (ExcessO < 0) then //There is not enough oxygen to complete
 //conversion to CO and H2: exit procedure.
{ begin
 MessageDlg('Equivalence ratio too high',mtError,[mbOK],0);}
 Exit{; //MessageDlg not needed: the user doesn't have to
 end} //know what method of guessing is used.
 else //Calculation can proceed
 begin //PrelCO and PrelH2 are the numbers of kmol/s CO and H2
 //formed in case there is just enough oxygen for fuel
 //oxidation to CO and H2 (ExcessO = 0).
 PrelCO:=Wfuel*(FuelComp[gtCO2]/GasProperties[gtCO2].Molemass
 +FuelComp[gtCO]/GasProperties[gtCO].Molemass
 +FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(OxidComp[gtCO2]/GasProperties[gtCO2].Molemass
 +OxidComp[gtCO]/GasProperties[gtCO].Molemass
 +OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +2*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +3*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +4*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass);
 PrelH2:=Wfuel*(FuelComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +FuelComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +FuelComp[gtH2]/GasProperties[gtH2].Molemass
 +2*FuelComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*FuelComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*FuelComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*FuelComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*FuelComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*FuelComp[gtH]/GasProperties[gtH].Molemass
 +0.5*FuelComp[gtOH]/GasProperties[gtOH].Molemass
 +HCRatio/2*FuelComp[gtCxHy]/CxHyMoleMass)
 +Woxid*(OxidComp[gtH2Og]/GasProperties[gtH2Og].Molemass
 +OxidComp[gtH2Ol]/GasProperties[gtH2Ol].Molemass
 +OxidComp[gtH2]/GasProperties[gtH2].Molemass
 +2*OxidComp[gtCH4]/GasProperties[gtCH4].Molemass
 +3*OxidComp[gtC2H6]/GasProperties[gtC2H6].Molemass
 +2*OxidComp[gtC2H4]/GasProperties[gtC2H4].Molemass
 +4*OxidComp[gtC3H8]/GasProperties[gtC3H8].Molemass
 +5*OxidComp[gtC4H10]/GasProperties[gtC4H10].Molemass
 +0.5*OxidComp[gtH]/GasProperties[gtH].Molemass
 +0.5*OxidComp[gtOH]/GasProperties[gtOH].Molemass);

 Gascomp[gtCO]:=GasProperties[gtCO].Molemass
 PrelCO(1-1/(PrelCO+PrelH2)*ExcessO);
 //Can this become negative? In theory, it can not become negative; that
 //would mean that there is enough oxygen to form CO2 and H2O, so that we
 //shouldn't have arrived in this part of the function in the first place.
 Gascomp[gtH2]:=GasProperties[gtH2].Molemass
 PrelH2(1-1/(PrelH2+PrelCO)*ExcessO);
 Gascomp[gtCO2]:=GasProperties[gtCO2].Molemass
 *(1/(1+PrelH2/PrelCO))*ExcessO;
 Gascomp[gtAr]:=Wfuel*FuelComp[gtAr]+Woxid*OxidComp[gtAr];
 Gascomp[gtO2]:=0;
 Gascomp[gtH2Og]:=GasProperties[gtH2Og].Molemass
 *(1/(1+PrelCO/PrelH2))*ExcessO;
 Gascomp[gtN2]:=Wfuel*FuelComp[gtN2]+Woxid*OxidComp[gtN2]+
 GasProperties[gtN2].Molemass*
 (Wfuel*(0.5*FuelComp[gtNO]/GasProperties[gtNO].Molemass
 +FuelComp[gtN2O]/GasProperties[gtN2O].Molemass)

NLR-TR-2014-150

 176

 +Woxid*(0.5*OxidComp[gtNO]/GasProperties[gtNO].Molemass
 +OxidComp[gtN2O]/GasProperties[gtN2O].Molemass));
 end;
 end;
 end;

 //Conversion of specie mass flows to fractions.
 for i:=Low(i) to High(i) do Gascomp[i]:=Gascomp[i]/(Wfuel+Woxid);
 Result:=true;
 end;

ReactantEnthalpy (GSPglobal.Pas)
//The purpose of this function is to calculate the reactant enthalpy, i.e. the
//enthalpy change involved in a temperature change between a temperature and the
//chemical reference temperature (T = 298.15 (K)) of a fuel flow and oxid flow.
function ReactantEnthalpy(const Wfuel,Tfuel,Woxid,Toxid:Double;
 const FuelComp,OxidComp:TGasComposition): Double;
 begin
 Result:=Wfuel*RH(FuelComp,Tfuel)+Woxid*RH(OxidComp,Toxid);
 end;

ReynoldsNumberIndex (GSPglobal.Pas)
//The purpose of this function is to calculate the Reynolds Number Index, using
//equation I.9. The necessary dynamic viscocity is calculated using equation
//C.41 and the functions ViscosityPerSpecie and PhiIJ.
function ReynoldsNumberIndex(const P, T:double; const MassComp: TGasComposition):
double;
 var Mu, PhiSummation : double;
 ig, i : TGas;
 MoleComp, VisCosArray: TGasComposition;
 //Watch out: VisCosArray is not really a composition, but an
 //array with the viscosities calculated for each specie present.

 begin //Calculate molecomposition and make correction for liquid species.
 MoleComp:=MoleComposition(MassComp);
 if MoleComp[gtH2Ol]>NearlyZero then //Liquid species not included in
 for ig:=Low(ig) to High(ig) do //calculation of viscosity.
 MoleComp[ig]:=MoleComp[ig]/(1-MoleComp[gtH2Ol]);

 //Calculate the viscosity per specie for the species present.
 for ig:=Low(ig) to High(ig) do with GasProperties[ig] do
 begin
 if MoleComp[ig]<NearlyZero then VisCosArray[ig]:=0
 else //1000 is CoefsChangeTemp
 if (T<1000) then VisCosArray[ig] := ViscosityPerSpecie(T, VisCoefs_below1000)
 else VisCosArray[ig] := ViscosityPerSpecie(T, VisCoefs_above1000);
 end;

 //Calculate the viscosity for the mixture (=Mu) using the mole-
 Mu:=0; //composition and the viscosity for the individual species.
 for ig:=Low(ig) to High(ig) do
 if MoleComp[ig]>NearlyZero then
 begin
 PhiSummation:=0;
 for i:=Low(i) to High(i) do
 //Calculate the interaction effect of the species on the viscosity.
 if not (i = ig) and (MoleComp[i]>NearlyZero) then
 PhiSummation:=PhiSummation+MoleComp[i]*PhiIJ(GasProperties[ig].Molemass,
 GasProperties[i].Molemass,
 VisCosArray[ig], VisCosArray[i]);
 Mu:=Mu+MoleComp[ig]*VisCosArray[ig]*1e-7/(MoleComp[ig] + PhiSummation);
 end; //1e-7 is a correction to go from micropoise to kg/(ms).

 Result:=P/P_slst*Mu/Mu_slst/(T/T_slst*FR(MassComp)/R_st);
 end;

NLR-TR-2014-150

 177

RH (GSPglobal.Pas)
//The aim of this function is to calculate the enthalpy change involved in a
//temperature change from a given temperature to the chemical reference
//temperature of T = 298.15 (K) of a given composition.
function RH(const GC : TGasComposition; const T : Double): Double;
 var
 i : TGas;
 begin
 Result:=0;
 //For the component CxHy enthalpy changes are calculated and added elsewhere.
 for i:=Low(i) to High(i) do if (i <> gtCxHy) and (GC[i]>NearlyZero) then
 Result:=Result+GC[i]*EnthalpyChange(T,TrefChemical,GasProperties[i]);
 end;

SetEquilibriumConditions (GSPglobal.Pas)
//This function determines a new temperature and composition in case of
//evaporation (/condensation) and/or dissociation.
function SetEquilibriumConditions(const InfoStr: String;
 var GasEQ : TGasConditions) : Boolean;
 const tempschatting = 1600;
 var
 availenth, neededenth, Hform, Hreact, Titer,Titer2, dir, err: double;
 Gas0 : TGasConditions;
 begin
 Result:=false;
 Gas0:=GasEQ;
 Titer:=Gas0.Tt;
 // Iteration
 // H20 liquid - vapour equilibrium:
 if (Gas0.Composition[gtH2Ol]>NearlyZero)
 or ((Gas0.Composition[gtH2Og]>NearlyZero) and (Titer<TcritH20)) then
 begin //Check whether equilibrium is correct.
 ResetAFQmem;
 repeat
 GasEQ.Composition:=EquilibriumH2O(Titer,Gas0.Pt,Gas0.Composition);
 //Check if water has changed phase
 if (AFQmem.iter=0)
 and (abs(GasEQ.Composition[gtH2Og]-Gas0.Composition[gtH2Og])<NearlyZero) then
 AFQcode:=2 //Exit, no change in phases, T = Titer.
 else //Calculate new temperature taking into account evaporation
 begin //or condensation.
 Hform:=FormationEnthalpy(Gas0.Composition)
 -FormationEnthalpy(GasEQ.Composition);
 Hreact:=RH(Gas0.Composition,Gas0.Tt);
 availenth:=Hreact+Hform;
 neededenth:=RH(GasEQ.Composition,Titer);
 err:=(availenth-neededenth)/abs(availenth);
 dir:=err;
 AFQcode:=AFQUIR(Titer,err,0,0.001,dir,40,InfoStr+' (H20)',Titer2);
 Titer:=Titer2;
 if Titer<200 then Titer:=220;
 end;
 until AFQcode>1;
 if AFQcode=3 then Exit; //Error in AFQUIR iteration
 end;
 GasEQ.Wgas:=GasEQ.W*(1-GasEQ.Composition[gtH2Ol]);
 GasEQ.Wgasc:=GasEQ.Wc*(1-GasEQ.Composition[gtH2Ol]);

 Gas0:=GasEQ;
 Titer:=Gas0.Tt;
 //Dissociation effects (towards CO, H2, O2 at T > Tfirst_dissociation 1800 K).
 if (Titer>Tfirst_dissociation)
// new 16-9-1998
 or (Gas0.Composition[gtOH]>NearlyZero) //Use Dissociation to remove gtOH
 or (Gas0.Composition[gtO]>NearlyZero) //Use Dissociation to remove gtO
 or (Gas0.Composition[gtH]>NearlyZero) //Use Dissociation to remove gtH
 then
 begin

NLR-TR-2014-150

 178

 ResetAFQmem;
 repeat
 if not Dissociation(Gas0) then Exit;
 //Only changes Composition at Pt, Tt.
 //Check if dissociation level has changed.
 if (AFQmem.iter=0)
 and (abs(GasEQ.Composition[gtO2]-Gas0.Composition[gtO2])<NearlyZero) then
 AFQcode:=2 //Exit, no change in O2 concentration, T = Titer.
 else //Calculate new temperature taking into account dissociation
 begin //or recombination.
 Hform:=FormationEnthalpy(Gas0.Composition)
 -FormationEnthalpy(GasEQ.Composition);
 Hreact:=RH(Gas0.Composition,Gas0.Tt);
 availenth:=Hreact+Hform;
 neededenth:=RH(GasEQ.Composition,Titer);
 err:=(availenth-neededenth)/abs(availenth);
 dir:=err;
 AFQcode:=AFQUIR(Titer,err,0,0.001,dir,40,InfoStr+' (dissociation)',Titer2);
 Titer:=Titer2;
 if Titer<200 then Titer:=220;
 end;
 until AFQcode>1;
 if AFQcode=3 then Exit; //Error in AFQUIR iteration
 end;
 //Else (Titer<=Tfirst_dissociation) then:
 //no change in composition; CO and other products form (previous)
 //dissociation are FROZEN !!!!

 GasEQ.Tt:=Titer;
 with GasEQ do H:=FH(Tt,Composition);
 Result:=true;
 end;

SingleReactorLoop (Combusn.Pas)
//This function is similar to 'TCombustor.MultiReactorLoop', but here the
//combustion chamber is modelled as one reactor. Also, no emissions are
//calculated. This function is used to find the combustor exit conditions,
//assuming that the NOx concentration at the exit is close to the equilibrium
//value. It is used once for every combustion chamber.
function TCombustor.SingleReactorLoop(const Mode : TCalcMode) : Boolean;
 var
 Vspec : integer;
 Dummy : Double;
 ig : TGas;
 GasCompNewm, GasCompNewv, Gasconc : TGasComposition;
 Flowin,Oxidin,Fuelin,Waterin : TGasConditions;
 begin
 Result:=false;

 // initial Flow at start of series of reactors:
 Flowin:=CombustionIn;
 Flowin.W:=0;
 Oxidin:=CombustionIn; //Compressor air enters via Oxidin.
 Fuelin.Composition:=Fuelcomposition;
 Fuelin.Tt:=Tfuel.Value;
 Fuelin.W := Wf;
 Waterin.Composition:=Waterinjcomposition;
 Waterin.Tt:=Twaterinj;
 Waterin.W:= Wwaterinj;
 with ReactorGrid do //Calculate equilibrium composition and speed, etc. at
 begin //exit of single reactor with data of last intersection.
 if EmissionModelTypeRGrp.ItemIndex=3 then // multizone model with V specifiers
 begin
 Vspec:=Vspecifier.ItemIndex;
 if Mode=cmDesign then case Vspec of
 0 : Out1.A := DValues[1,RowCount-1];
 1 : Out1.Mach := DValues[2,RowCount-1];
 2 : Out1.V := DValues[3,RowCount-1];
 end;

NLR-TR-2014-150

 179

 end
 else //In case the new combustor emission model is not used, the Mach number
 //at the combustor exit for calculation of static gas properties is
 //estimated 0.1.
 begin
 Vspec:=1;
 Out1.Mach := 0.1;
 end;
 if not EquilibriumReactor(Mode,dlLow,Vspec, // specify estimated Mach in reactor
exit
 RowCount-2, Flowin, Fuelin, Oxidin,
 Waterin, Out1, 0,0,0,
 //L, dNOdtin, NOin, dNOdtout, NOout, etc. are not used, so a dummy 0 is
 //entered here.
 Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,
 Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,Dummy,
 Dummy,Dummy,Dummy,Dummy) then Exit;

 if Vspecifier.Itemindex<>2 then DValues[3,RowCount-1]:=Out1.V;
 if Vspecifier.Itemindex<>1 then DValues[2,RowCount-1]:=Out1.Mach;

 //Additional output to be calculated.
// DValues[2,RowCount-1] :=Out1.Mach;
// DValues[3,RowCount-1] :=Out1.V;
 DValues[13,RowCount-1] :=Out1.Ts;
 DValues[14,RowCount-1] :=Out1.Ps;
 {HCratio of 1 as dummy here since there is no CxHy anymore in Out1}
 DValues[21,RowCount-1]:=ChemicalEqRatio(Out1.Composition,1{HCratio});
 end;
 with Out1 do Rhoexit:=Ps/FR(Composition)/Ts;
 Result:=true;
 end;

StoichFuelAirRatio (GSPglobal.Pas)
//The aim of this function is to calculate the stoichiometric fuel-air-ratio
//(E.R. = 1) for a given fuel composition
function StoichFuelAirRatio(const HCRatio : Double;
 const FuelComp: TGasComposition): Double;
 begin
 Result:=1/(GasProperties[gtO2].MoleMass/0.2314151*
 (0.5*FuelComp[gtCO]/GasProperties[gtCO].MoleMass
 -FuelComp[gtO2]/GasProperties[gtO2].MoleMass
 +0.5*FuelComp[gtH2]/GasProperties[gtH2].MoleMass
 +2*FuelComp[gtCH4]/GasProperties[gtCH4].MoleMass
 +3.5*FuelComp[gtC2H6]/GasProperties[gtC2H6].MoleMass
 +3*FuelComp[gtC2H4]/GasProperties[gtC2H4].MoleMass
 +5*FuelComp[gtC3H8]/GasProperties[gtC3H8].MoleMass
 +6.5*FuelComp[gtC4H10]/GasProperties[gtC4H10].MoleMass
 -0.5*FuelComp[gtO]/GasProperties[gtO].MoleMass
 +0.25*FuelComp[gtH]/GasProperties[gtH].MoleMass
 -0.25*FuelComp[gtOH]/GasProperties[gtOH].MoleMass
 -0.5*FuelComp[gtNO]/GasProperties[gtNO].MoleMass
 -0.5*FuelComp[gtN2O]/GasProperties[gtN2O].Molemass
 +(1+HCRatio/4)*FuelComp[gtCxHy]/(atomweightC+atomweightH*HCratio)));
 //last two lines can be omitted when NO and N2O are omitted from
 //the user-spec fuel composition interface.
 end;

StoichFuelFlow (Combusn.Pas)
//The aim of this function is to find the fuel flow to be added per kg of oxid
//flow to make the mixture stoichiometric.
function TCombustor.StoichFuelFlow(const FuelComp, OxidComp: TGascomposition;
 const HCratio: Double;
 var StoichFuelFlowPerKgOxid: Double): Boolean;
 var
 err, dir, Iterfuelflow, Fuelflownew, AFQcode: Double;
 ig : TGas;

NLR-TR-2014-150

 180

 StartGasComp : TGascomposition;

 begin
 Result:=false;
 IterFuelFlow:=0.05;
 ResetAFQmem;

 //Prompt NOx formation cannot be predicted if the flow is already fuel-rich
 //without the fuel added.
 if ChemicalEqRatio(OxidComp, 0)>1 then
 begin
 MessageDlg('Warning: Equivalence ratio of combustion oxidant higher than one',
 mtError, [mbOK], 0);
 exit;
 end;

 repeat //Search for FuelFlow that makes the combustion stoichiometric.
 for ig:=Low(ig) to High(ig) do //Only one type of fuel may be used.
 StartGasComp[ig]:=(1*OxidComp[ig]
 +IterFuelFlow*FuelComp[ig])
 /(1+IterFuelFlow);

 //Correct value for fuelflownew is found when the (chemical) equivalence
 //ratio is equal to one (err = 0).
 err:=ChemicalEqRatio(StartGasComp, HCratio)-1;
 dir:=err;
 AFQcode:=AFQUIR(IterFuelFlow,err,0,0.001,dir,40,
 (Self.Owner as TGSPcomp).CompIDstr,FuelFlowNew);
 IterFuelFlow:=FuelFlowNew;
 if IterFuelFlow<=0 then IterFuelFlow:=NearlyZero;
 until AFQcode>1;
 if AFQcode=3 then Exit; //Error in AFQUIR iteration
 StoichFuelFlowPerKgOxid:=IterFuelFlow;
 Result:=true;
 end;

StoichNOEquilibrium (Combusn.Pas)
//This function calculates the stoichiometric equilibrium NO molefraction
//of a given fuel inserted anywhere in the combustion chamber as long as the
//flow from the previous reactor mixed with the oxid entering this reactor is
//not fuel-rich.
function TCombustor.StoichNOEquilibrium(const Flowin, Oxidin, Waterin,
 Fuelin: TGasconditions;
 const A: double;
 var StoichNOEq: double): boolean;
 label iteration;
 var
 ChemEqRatio, IterFuelFlow, FuelFlowNew, FormEnthalpyWithoutFlowout,
 Hformation, Havail, Hreactant, Hneeded,
 err, dir, AFQcode, Titer, CxHyMoleMass : Double;
 StartGasComp, Gascompnewv : TGasComposition;
 Flowout, InMix : TGasConditions;
 ig : TGas;
 i : Integer;
 ConvergedAllowed : Boolean;

 begin
 Result:=false;
 IterFuelFlow:=1;
 ResetAFQmem;
 for ig:=Low(ig) to High(ig) do
 Inmix.Composition[ig]:=(Flowin.W*Flowin.Composition[ig]
 +Oxidin.W*Oxidin.Composition[ig]
 +Waterin.W*Waterin.Composition[ig])
 /(Flowin.W+Oxidin.W+Waterin.W);
 Inmix.W:=Flowin.W+Oxidin.W+Waterin.W;
 if ChemicalEqRatio(Inmix.Composition, HCRatio)>1 then
 //Prompt NOx formation cannot be predicted if the flow
 //is already fuel-rich without the fuel added

NLR-TR-2014-150

 181

 begin
 MessageDlg('Warning: Equivalence ratio too high for accurate Prompt-NOx
 prediction', mtError, [mbOK], 0);
 StoichNOEq:=0;
 Result:=true; //Although the promptNOx can't be predicted well, the
 exit; //calculations proceed.
 end;

 repeat //Search for FuelFlow that makes the combustion stoichiometric.
 for ig:=Low(ig) to High(ig) do //Only one type of fuel may be used.
 StartGasComp[ig]:=(Inmix.W*Inmix.Composition[ig]
 +IterFuelFlow*Fuelin.Composition[ig])
 /(Inmix.W+IterFuelFlow);
 //ChemicalEqRatio(StartGasComp, HCRatio, ChemEqRatio);
 err:=ChemicalEqRatio(StartGasComp, HCRatio)-1;
 dir:=err;
 AFQcode:=AFQUIR(IterFuelFlow,err,0,0.001,dir,40,'',FuelFlowNew);
 IterFuelFlow:=FuelFlowNew;
 if IterFuelFlow<0 then IterFuelFlow:=NearlyZero;
 until AFQcode>1;
 if AFQcode=3 then
 begin
 MessageDlg('No convergence in Afquir IterFuelFlow',mtError, [mbOK], 0);
 Exit; //Error in AFQUIR iteration
 end;

 //Calculate the Equilibrium Composition
 i:=0;
 ResetAFQmem;
 Flowout.Pt:=Flowin.Pt;
 Flowout.A:=A;

 //First a guess of the composition is made by application of ProdFromReact.
 //Using this new composition, a (total) temperature guess is produced.
 if not ProdFromReact(IterFuelFlow, Inmix.W, HCRatio, Fuelin.Composition,
 Inmix.Composition, Flowout.Composition) then
 begin
 Flowout.Tt:=2000; //ProdfromReact doesn't work: use rough estimate.
 goto iteration;
 end;

 Flowout.W:=Inmix.W+IterFuelFlow;
 Hreactant:= Flowin.W*RH(Flowin.Composition,Flowin.Tt)
 +Oxidin.W*RH(Oxidin.Composition,Oxidin.Tt)
 +Waterin.W*RH(Waterin.Composition,Waterin.Tt)
 +IterFuelFlow*FuelReactantEnthalpyPerKg;
 FormEnthalpyWithoutFlowout:=Flowin.W*FormationEnthalpy(Flowin.Composition)
 +IterFuelFlow*FuelFormationEnthalpyPerKg
 +Oxidin.W*FormationEnthalpy(Oxidin.Composition)
 +Waterin.W*FormationEnthalpy(Waterin.Composition);
 Hformation:=FormEnthalpyWithoutFlowout
 -Flowout.W*FormationEnthalpy(Flowout.Composition);
 Flowout.Tt:=2000;
 repeat //Find temperature guess.
 inc(i);
 Titer:=Flowout.Tt;
 Flowout.Tt:=Flowin.Tt+Hformation/Flowout.W/FCp(Titer,Flowout.Composition);
 until (abs(Titer-Flowout.Tt)<40) or (i>16);
 if i>16 then
 begin
 MessageDlg('Reactor exit temp. estimation iteration not converging in'{+#13+
 (Self.Owner as TGSPcomp).CompIDstr}, mtError, [mbOK], 0);
 Exit;
 end;
 {end;
 {end
 {else
 begin
 Flowout.W:=Flowin.W+Oxidin.W+Waterin.W+IterFuelFlow;
 Flowout.Tt:=Flowin.Tt;
 Flowout.Composition:=Flowin.Composition;

NLR-TR-2014-150

 182

 end;}

 //Start iteration to find correct equilibrium temperature and composition.
 iteration:
 ResetAFQmem;
 i:=0;
 repeat
 ConvergedAllowed:=true;

 //The old composition is used, so there should be an extra
 //'repeat-until'-loop here, but it is assumed that in the last loops used to
 //find the temperature, the composition is almost constant
 with Flowout do if (i>0) then //In the first loop the composition is calcu-
 //lated using total temperature and pressure.
 begin
 if not GetStatic(W, Pt, Tt, A, Composition, Ps, Ts, Mach, V,
 'Combustion reactor') then Exit;
 if not CombEquilibrium(Ts, Ps, HCRatio, StartGasComp,Gascompnewv,
 Composition) then
 begin
//old if not ProdFromReact(1, 0, CxHyMoleMass,StartGasComp, Air,
 //Composition) then
//new 20-10-1998
 if not ProdFromReact(1, 0, HCratio,StartGasComp, Air, Composition) then
 begin
 MessageDlg('No convergence in Equilibrium Reactor',mtError, [mbOK], 0);
 Exit;
 end;
 Gascompnewv:=MoleComposition(Composition);
 ConvergedAllowed:=false;
 end;
 end
 else //i=0: first iteration loop (total temperature and pressure used).
 begin
 ConvergedAllowed:=false;
 if not CombEquilibrium(Tt,Pt,HCRatio,StartGasComp,Gascompnewv,
 Composition) then
 begin
//old ProdFromReact(1, 0, CxHyMoleMass,StartGasComp, Air, Composition);
//new 20-10-1998
 ProdFromReact(1, 0, HCratio,StartGasComp, Air, Composition);
 Gascompnewv:=MoleComposition(Composition);
 end;
 end;

 Hformation:=FormEnthalpyWithoutFlowout
 -Flowout.W*FormationEnthalpy(Flowout.Composition);
 Havail:=Hreactant+Hformation; //Eventually apply heat loss here
 with Flowout do Hneeded:=W*RH(Composition,Tt);
 err:=(Havail-Hneeded)/abs(Havail);

 //In case the error is small in the first step (i=0), the new temperature
 //Titer, given by AFQuir will be far to small if 'dir:=err' is used.
 if i>0 then dir:=err
 else dir:=0.95;
 AFQcode:=AFQUIR(Flowout.Tt,err,0,0.001,dir,40,
 'Reactor equilibrium iteration in'{+#13+
 (Owner as TGSPcomp).CompIDstr},Titer);
// if Titer<200 then Titer:=220; //If T<647.29, liquid water can exist,
 if Titer<In1.Tt then Titer:=In1.Tt; //which is not accounted for in the
 if Titer>6000 then Titer:=5000; //CombEquilibrium procedure.
 Flowout.Tt:=Titer;
 inc(i);
 until (AFQcode>1) and (ConvergedAllowed);
 if AFQcode=3 then Exit; //Error in AFQUIR iteration
 StoichNOEq:=Gascompnewv[gtNO];
 Result:=true;
 end;

NLR-TR-2014-150

 183

ViscosityPerSpecie (GSPglobal.Pas)
//This function calculates the viscosity for a specie using equation C.40.
function ViscosityPerSpecie(const T: double; const GC:TVisCoefArray): double;
 //Pay attention: viscosity is in (micropoise); in function
 begin //'ReynoldsNumberIndex' the correction to kg/(ms) is performed.
 Result:=exp(GC[1]*LN(T)+GC[2]/T+GC[3]*IntPower(T,-2)+GC[4]);
 end;

VolumeComposition (GSPglobal.Pas)
//This function calculates the volumecomposition from the mass composition.
function VolumeComposition(const MassComposition:TGasComposition):TGasComposition;
var
 i :TGas;
 invmolweight:double;
 GC : TGasComposition;
begin
invmolweight:=0;
for i:=Low(i) to High(i) do if MassComposition[i]>NearlyZero then
 begin
 GC[i]:=MassComposition[i]/GasProperties[i].MoleMass;
 //Exclude water volume (assume contribution to volume not significant):
 if i<>gtH2Ol then invmolweight:=invmolweight+GC[i];
 end
else GC[i]:=0;
for i:=Low(i) to High(i) do Result[i]:=GC[i]/invmolweight;
//Total of all GC components = 1+GC[gtH20l].
//GC[gtH2Ol] is non-zero: this should be ignored; it is done to easily convert
//the volumecomposition to the masscomposition.
end;

	Cover
	Executive summary
	Title page
	Preface
	Summary
	Contents
	List of Symbols
	1 Introduction
	2 Gas turbine fuels and exhaust gas emissions
	2.1 Fuels
	2.1.1 Introduction
	2.1.2 Liquid fuels
	2.1.3 Gaseous fuels

	2.2 Alternative fuel effects on performance
	2.3 Exhaust gas emissions
	2.3.1 Pollutants
	2.3.2 Emission monitoring
	2.3.3 Regulations

	3 Gas models for gas turbine performance calculations
	3.1 Constant specific heat gas model
	3.2 Temperature dependent specific heat gas model
	3.3 Variable composition gas model
	3.4 Variable composition kinetic gas model

	4 The new GSP 8.0 gas model
	4.1 Choice of a new gas model
	4.2 Description of the new gas model
	4.2.1 General
	4.2.2 Relations between thermodynamic and thermal transport properties
	4.2.3 Modelling of composition changes

	4.3 Application of the new gas model
	4.3.1 Applying changing compositions
	4.3.2 Determining compressor and turbine performance
	4.3.3 Extensions in the user interface

	5 Gas turbine combustor models
	5.1 Combustion flow modelling
	5.1.1 Black box model
	5.1.2 Multi-reactor model
	5.1.3 One-dimensional model
	5.1.4 Multi-dimensional model

	5.2 Combustion chemistry modelling
	5.2.1 Flame sheet model
	5.2.2 Chemical equilibrium model
	5.2.3 Non-equilibrium and kinetic scheme chemistry

	6 The new GSP 8.0 combustor model
	6.1 Flow modelling
	6.2 Chemistry modelling
	6.2.1 Calculation of the equilibrium temperature and composition
	6.2.2 Exhaust gas emissions modelling
	6.2.2.1 General calculation procedure
	6.2.2.2 Equations for NOx-emissions
	6.2.2.3 Equations for other emissions
	6.2.2.4 Tuning the emission model

	7 Validation
	7.1 The CF6-80C2 model
	7.1.1 General
	7.1.2 Emission predictions

	7.2 The GE LM2500 model
	7.2.1 General
	7.2.2 Performance predictions
	7.2.3 Emission predictions

	7.3 Discussion on the results

	8 Conclusions and Recommendations
	References
	Appendix A Graduation assignment
	Appendix B Combustion chemical reactions
	B.1 Reaction kinetics
	B.2 Dissociation
	B.3 Heats of reaction and heats of formation
	B.4 Calculating equilibrium compositions

	Appendix C Detailed description of gas models
	C.1 GSP 7.0
	C.2 GasTurb 7.0
	C.3 GasTurb 8.0
	C.4 NASA CEA-Program
	C.4.1 Calculation of thermodynamic and thermal transport properties
	C.4.2 Calculation of equilibrium compositions

	C.5 A constant specific heat gas model

	Appendix D Detailed description of combustor models
	D.1 GSP 7.0
	D.2 GasTurb 7.0
	D.3 GasTurb 8.0

	Appendix E Formation of emissions
	E.1 Formation of UHC, CO and Smoke
	E.2 Formation of Nitrogen oxides

	Appendix F NOx-reductions in gas turbines
	Appendix G An introductory description of GSP
	G.1 A general introduction to GSP
	G.2 GSP and the gas model

	Appendix H Details of the new GSP 8.0 gas model
	H.1 General remarks
	H.2 Determination of thermodynamic and thermal transport properties as a function of temperature, pressure and composition
	H.3 Modelling of composition changes
	H.3.1 Solving the enthalpy balance
	H.3.2 Determination of equilibrium compositions at a given temperature

	H.4 Total versus static temperatures and pressures

	Appendix I Calculation of compressor and turbine performance with real gas effects
	I.1 Calculating outlet conditions
	I.2 Using maps

	Appendix J Calculating combustion equilibrium
	J.1 Solving the enthalpy balance
	J.2 Calculating equilibrium at a given temperature

	Appendix K Delphi code of the gas and combustor model
	K.1 Structure of the gas and combustor model
	K.2 Pascal code of the new procedures

